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There are a substantial number of empirical relations that began with the identification
of a pattern in data; were shown to have a terse power-law description; were interpreted
using existing theory; reached the level of “law” and given a name; only to be subse-
quently fade away when it proved impossible to connect the “law” with a larger body of
theory and/or data. Various forms of allometry relations (ARs) have followed this path.
The ARs in biology are nearly two hundred years old and those in ecology, geophysics,
physiology and other areas of investigation are not that much younger. In general if X
is a measure of the size of a complex host network and Y is a property of a complex
subnetwork embedded within the host network a theoretical AR exists between the two
when Y = aXb. We emphasize that the reductionistic models of AR interpret X and
Y as dynamic variables, albeit the ARs themselves are explicitly time independent even
though in some cases the parameter values change over time. On the other hand, the
phenomenological models of AR are based on the statistical analysis of data and inter-
pret X and Y as averages to yield the empirical AR: 〈Y 〉 = a〈X〉b. Modern explanations
of AR begin with the application of fractal geometry and fractal statistics to scaling phe-
nomena. The detailed application of fractal geometry to the explanation of theoretical
ARs in living networks is slightly more than a decade old and although well received it
has not been universally accepted. An alternate perspective is given by the empirical AR
that is derived using linear regression analysis of fluctuating data sets. We emphasize
that the theoretical and empirical ARs are not the same and review theories “explain-
ing” AR from both the reductionist and statistical fractal perspectives. The probability
calculus is used to systematically incorporate both views into a single modeling strategy.
We conclude that the empirical AR is entailed by the scaling behavior of the probability

density, which is derived using the probability calculus.

Keywords: Allometry; fractals; physiology; scaling; statistical analysis; ontogenetic
growth.
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On Allometry Relations

1. Introduction

At the turn of the nineteenth century the German polymath Gauss64 and the Amer-

ican mathematician Adrian1 introduced into science the law of frequency of errors,

the French physicist Laplace116 proved the central limit theorem and the French

zoologist Curvier34 determined that the brain mass of a mammal increases more

slowly than does its total body mass (TBM). Cuvier’s observations initiated the

field of Allometry that relates the size of an organ to that of the host organism with

mass serving as a measure of size. The roads of statistical analysis and observation

(experiment) converge in the twenty-first century to explain the origin of allometry

relations (ARs).

Allometry, literally meaning by a different measure, has acquired a mathematical

description through its relations along with a number of theoretical interpretations

to account for its mathematical form. However no one theory has been universally

accepted as successfully explaining ARs in their many guises so the corresponding

origins remain controversial. Consequently, in reviewing the properties of allometry

data along with their various theoretical explanations we herein provide a glimpse

as to those origins.

We use the generic term network in our narration in order to slip smoothly from

ARs in physical networks with identical particles and van de Waal’s forces, to bio-

logical networks with structured elements and chemical interactions, to geophysical

networks with complex tributaries and branching architectures. This nomenclature

also enables us to transition from arcane historical theory to a modern perspectives

of complex networks. The mathematics of renormalization group (RG) theory,103,259

fractional differential equations,126,144 fractional stochastic differential equations236

and transitioning from dynamic variables to phase space variables to express the

probability calculus in terms of fractional diffusion equations108,207,236 are herein

found to provide insight into different aspects of the origins of ARs.

Allometry has been defined as the study of body size and its consequences79,176

both within a given organism and between species in a given taxon. Gayon65 re-

viewed the history of the concept of allometry, defined as the study of body size

and its consequences79,176 within a given organism and between species in a given

taxon, and distinguished between four different forms: (1) ontogenetic allometry,

which refers to relative growth in individuals; (2) phylogenetic allometry, which

refers to constant differential growth ratios in lineages; (3) intraspecies allometry,

which refers to adult individuals within a species; (4) interspecies allometry, which

refers to the same kind of phenomenon among related species. The theoretical

entailment of static from dynamic allometry models has not been systematically

studied, although there has been some recent effort in that direction.67,243 Herein

we review the use of phenomenological dynamic equations from physical biology to

relate the dynamic allometry of the first two categories to their static counterparts

in the last two.

Galileo62 recognized that in order for an organism or physical structure to retain

a constant function as size increases requires its shape (architecture) and/or the
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materials with which it is constructed to change. This simple physical picture has

biological and social analogs in which the size of a network has unavoidable con-

sequences.164,213 We focus on ARs for physiologic phenomena, but we do indicate

where insight might also be gained from other disciplines as well.

1.1. What is the equation?

Sir Julian Huxley98; grandson of the Huxley of Darwin evolution fame, brother of

the novelist Aldous (Brave New World) and half-brother of the biophysicist Andrew

(the Hodgkin–Huxley equations)209; proposed that two parts of the same organism

have proportional rates of growth. In this way if Y is a living subnetwork observable

with growth rate ϑ and X is a measure of the size of a living host network with

growth rate γ then the fractional increase in the two is denoted according to Huxley

by:

dX/γX = dY/ϑY . (1)

This equation can be directly integrated to obtain:

Y = aXb , (2)

the time-independent AR where a and b (= γ/ϑ) are empirically determined. The

theoretical AR given by Eq. (2) considered by Huxley is the basis of subsequent

theoretical discussions in such excellent books as Schmidt–Nielson195 and Calder.31

The intraspecies AR relates a property of an organism within a species to its

TBM. The interspecies AR relates a property across species such as the basal

metabolic rate (BMR) to TBM.31,195 These two allometry groups are distinctly

different and the models developed to determine the theoretical forms of the al-

lometry coefficient a and exponent b in the two cases are quite varied, as shown

subsequently.

Equation (2) looks very much like the scaling relations that have become so

popular in the study of complex networks over the last decade.3,30,153,221,239 His-

torically the nonlinear nature of Eq. (2) has precluded the direct fitting of the

equation to data. A logarithmic transformation is traditionally made and a linear

regression to the data on the equation

lnY = ln a+ b lnX (3)

is used to estimate the parameters a and b. In Sec. 2 we review a myriad of phe-

nomena from a number of disciplines in which ARs have been brought to light. In

Sec. 3 we discuss the fitting of ARs to data.

All complex dynamical networks manifest fluctuations, either due to intrinsic

nonlinear dynamics producing chaos124,155 or due to coupling of the network to an

infinite dimensional, albeit unknown environment,118 or both. The modeling strate-

gies adopted to explain ARs have traditionally taken one of two roads: the statistical

approach in which residual analysis is used to understand statistical patterns and
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to identify the causes of variation in the AR;31,195 or the reductionist approach to

identify mechanisms that explain specific values of the allometry parameters.10,247

We find that neither approach separately provides a complete explanation of the

variety of phenomena described by ARs. The influence of the environment, whether

inducing fluctuations in a reductionist model, or producing a systematic change in a

statistical model, has been taken into account in multiple studies.71,73,141 In Sec. 5

we take the road of the probability calculus that systematically incorporates both

reductionistic and statistical mechanism into the phenomenological explanation of

ARs. This calculus enables modelers to associate characteristics of the measured

probability density function (pdf ) with specific deterministic mechanisms and with

structural properties of the coupling between variables and fluctuations.118,175

1.2. Is there universality?

In physics the notion of universality occurs in the context of critical phenomena,

where in the vicinity of a phase transition a network ceases to have a characteristic

scale and can be characterized by a set of critical exponents. The principle of

universality claims that networks that undergo a phase transition can be grouped

into one of a small number of universality classes. Gisiger68 discusses universality in

the context of invariance in biology; specifically addressing the role of 1/f noise. In

the context of AR universality might imply that the allometry exponent plays the

role of a critical exponent. The empirical evidence suggests that this interpretation

of the allometry exponent is not appropriate. A somewhat less stringent definition

of universality may be defensible; one in which the details of the interactions are

washed out but the form of the AR persists with the allometry exponent in a

restricted interval.

In biology the ARs associate functional variables with measures of body size,

such as the TBM X = M raised to a noninteger powerM b. The average BMR is one

such functional variable Y = B that can be expressed in terms of TBM. The most

prevalent theories of metabolic allometry argue for either b = 2/3, based on body

cooling, or b = 3/4, based on energy efficiency. Selected data sets have been used

by various investigators to support either of these two values. However, there is also

strong evidence that there is no universal value of b that is satisfied by all metabolic

data. In fact, Bokma21 presents a large amount of fish data to demonstrate that no

single universal value of the allometry exponent b exists. This argument is supported

by Glazier72 who observes that the isometric (b = 1) metabolic scaling of pelagic

animals is an evolutionarily malleable trait that responds to environmental changes.

On the other hand, West and Brown252 argue that living networks do have uni-

versal scaling laws. Their arguments rest on patterns observed in biological and

botanical data and the quantitative theory of the fractal structure, organization

and dynamics of the branching networks in living systems. The theory developed

by West et al.,247 which we review in Sec. 4, has as one of its tenets the existence of

hierarchical fractal-like branching networks for the delivery of nutrients resulting in
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b = 3/4. They attribute this origin of metabolic AR to evolution’s solution to the

grand challenge of how highly complex, self-sustaining, reproducing, living networks

service enormous numbers of localized microscopic units in an efficient and “demo-

cratic” way. Their conclusion, like that of the earlier analysis others,230,231 was

that fractal networks have an evolutionary advantage over those that scale classi-

cally,213 independently of what the networks distribute from macroscopic reservoirs

to microscopic sites.

Scaling is a ubiquitous property of large complex networks indicating that the

observables simultaneously fluctuate over many time and/or space scales. In the

physical sciences such phenomena have historically been categorized as 1/f noise225

or 1/f variability.239 Mandelbrot131 was probably the first to recognize the wide-

ranging significance of this 1/f variability with his introduction of fractals into the

scientist’s lexicon. The existence of ARs has been closely tied to fractal geometry

by some investigators247 and in Sec. 5 we show that the origin of AR may reside in

fractal statistics, the scaling of pdfs, and not in fractal geometry.

1.3. Some comments on fractals

Mandelbrot131,132 identified ARs masquerading under a variety of empirical “laws”

and argued that they were a consequence of complex phenomena not having char-

acteristic scales. Subsequent interpretations of ARs often involve fractals and so

we recall some fundamental properties of fractals that are subsequently useful. To

begin let us give a qualitative definition of a fractal:133 “A fractal is a shape made

of parts similar to the whole in some way.”

The fractal concept arises in three distinct, but related guises; geometry, statis-

tics and dynamics. Geometric fractals deal with the self-similarity of complex geo-

metric forms. A fractal object examined with ever increasing magnification reveals

ever greater levels of detail; detail that is self-similar in character. The basic math-

ematical properties of geometric fractals and their myriad of applications can be

found in a number of excellent books17,55,57,131,133,143,238 and is not repeated here.

We merely record and interpret those properties that may be needed for the anal-

yses of ARs. The number of self-similar objects N required to cover an object of

dimension D is given by N = r−D, where r is the size of the “ruler”. In this way

the fractal dimension of the object being covered can be mathematically defined as:

D = − lnN/ ln r (4)

in the limit of vanishing r. As the ruler size goes to zero the number of rulers

necessary to cover the object diverges to infinity in such a way that D remains

finite for self-similar objects and this dimension is not necessarily integer valued.

An observable Z(t) is scaling if for a positive constant c it satisfies the homo-

geneity relation

Z(ct) = cHZ(t) . (5)
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Modifying the units of the independent variable therefore only changes the overall

observable by a multiplicative factor; this is self-affinity. Barenblatt13 remarked

that such scaling laws are not merely special cases of more general relations; they

never appear by accident and they always reveal self-similarity. Note that scaling

alone is not sufficient to prove that a function is fractal, but if a function is fractal

it does scale.

In the sequel we relax the distinction between self-affine and self-similar, since

self-similarity has been extended to encompass both meanings in the physics liter-

ature. Meakin143 asserts that in homogeneous scaling relations it is the coefficient

that embodies the “real physics” behind power-law relations. He further observed

that the allometry exponents are universal in many homogeneous scaling phenom-

ena and the allometry coefficients provide the only means to control physical prop-

erties and behavior.

Scale invariance or scaling requires that a function Φ(X1, . . . , XN ) be such that

scaling each of the N variables by an appropriate choice of exponents (α1, . . . , αN )

always recovers the same function Φ(X1, . . . , XN ) up to an overall constant:

Φ(X1, . . . , XN ) = γβΦ(γα1X1, . . . , γ
αNXN ) . (6)

We observe that Eq. (2) is possibly the simplest of such scaling relations between

two variables such that they satisfy the RG relation

X(γY ) = γbX(Y ) .

The lowest-order solution to this equation is, of course, given by Eq. (2) and we

provide the general solution subsequently. Changes in the host network X (size)

control (regulate) changes in the subnetwork Y (property) in living networks and

in some physical networks through the homogeneous scaling relation.

Inhomogeneity in space and intermittency in time are the hallmarks of fractal

statistics and it is the statistical rather than the geometrical sameness that is ev-

ident at increasing levels of magnification. In geometrical fractals the observable

scales from one level to the next. In statistical fractals where the phase space vari-

ables (z, t) replaces the dynamic variable Z(t) it is the pdf P (z, t) that satisfies a

scaling relation:

P (αz, βt) = β−µP (z, t) ; µ = lnα/ lnβ , (7)

where µ = 2H and the homogeneity relation is interpreted in the sense of the pdf in

Eq. (7). Time series with such statistical properties are found in multiple disciplines

including finance,134 economics,135 neuroscience,4,226 geophysics,215 physiology240

and general complex networks.244 A complete discussion of statisical data with such

scaling behavior is given by Beran20 in terms of the long-term memory captured

by the scaling exponent. One example of a scaling pdf is given by:

P (z, t) =
1

tµ
Fz

( z

tµ

)
(8)

1230010-7
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and in a standard diffusion process Z(t) is the displacement of the diffusing particle

from its initial position at time t, µ = 1/2 and the functional form of Fz(·) is a

Gauss distribution. However, for general complex phenomena there is a broad class

of distributions for which the functional form of Fz(·) is not Gaussian and the

scaling index µ �= 1/2, see Sec. 5 for additional discussion.

Dynamic fractals do not directly enter our discussion of ARs. However for com-

pleteness we mention that in a dynamic fractal the geometry of the manifold on

which the dynamics of a network unfolds is fractal, so that the associated chaotic

time series is also fractal.155

2. Empirical Allometry

In this section we review areas of investigation where size has been observed to

control the properties of a phenomenon. In so doing we catalog a number of phe-

nomenological relations that are not often discussed from the same perspective.

There is a nontrivial number of empirical relations that began as the identification

of a pattern in data; were shown to have a terse power-law description; were in-

terpreted using existing theory; reached the level of “law” and given a name, not

always after the discoverer; only to subsequently fade away when it proved impos-

sible to connect the “law” with a larger body of theory and/or data. An example

drawn from the Notebooks of Leonardo da Vinci177 relates the diameter of a parent

limb d0 to two daughter limbs d1 and d2 :

dα0 = dα1 + dα2 . (9)

The da Vinci scaling relation supplies the phenomenological mechanism necessary

for AR to emerge in a number of disciplines, as we subsequently discuss.

Nearly five hundred years after de Vinci recorded his observations Murray150

used energy minimization to derive the same equation with the theoretical value

α = 3, which is known in the literature as Murray’s Law or the Murray–Hess Law.

In the simplest case d1 = d2 the da Vinci scaling relation reduces to scaling between

sequential generations of a bifurcating branching network having daughter branches

of equal radii:

dk+1 = 2−1/αdk (10)

resulting in an exponential reduction in branch diameter from generation to

generation.

2.1. Living networks

Living networks have static intraspecies ARs that link two distinct but interacting

parts of the same organism in terms of mass, with mass serving as a measure of

size. Smith202 maintained that concentrating on a power function as the method

for evaluating the biological consequences of size has masked the complexity ofthe

1230010-8
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allometry problem. We agree with this observation, but perhaps in ways that Smith

would not have anticipated, as will become evident.

2.1.1. Biology

Cuvier34 was the first to recognize that brain mass increases more slowly than

TBM as we proceed from small to large species within a taxon. This empirical

observation was subsequently made between many other biological observables and

was first expressed mathematically as an allometric relation by Snell204:

brainweight = a(bodyweight)b , (11)

where on log–log graph paper a is the intercept with the vertical axis and b is the

slope of the line segment. Mammalian neocortical quantities Y have subsequently

been empirically determined to change as a function of neocortical grey matter

volume X as an AR. The neocortical allometry exponent was first measured by

Tower214 for neuron density to be approximately −1/3. The total surface area of

the mammalian brain was found to have an allometry exponent of approximately

8/9.94,100,167 Changizi33 points out that the neocortex undergoes a complex trans-

formation covering the five orders of magnitude from mouse to whale depicted in

Fig. 1 but the ARs persist; those mentioned here along with many others.

Fig. 1. Mouse to elephant curve. BMR of mammals and birds are plotted versus TBM on log–log

graph paper. The solid line sement is the best linear regression of Eq. (2) to the data with a slope
very close to 3/4. [reproduced from Schmidt–Nielsen195 with permission].
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Another quantity of interest is the time; not the chronological time measured by

a clock but the intrinsic time of a biological process first called biological time by

Hill.93 Hill reasoned that since so many properties of an organism change with size

that time itself may scale with TBM. Lindstedt and Calder119 develop this concept

further and determine experimentally that biological time, such as species longevity,

satisfies an AR with Y being the biological time. Lindstedt et al.121 clarify that

biological time τ is an internal mass-dependent time scale

τ = aM b (12)

to which the duration of biological events are entrained. They present a partial list

of such events that includes breath time, time between heart beats, blood circulation

time and time to reach sexual maturity. In all these examples and many others the

allometry exponent clusters around the theoretical value b = 1/4. Note that the

total energy of an organism seen as a bioreactor is proportional to volume (M) and

the biological time is proportional to M1/4, so the metabolic rate (energy/time)

would scale as M3/4.

2.1.2. Botany

Niklas154 shows in Fig. 2 an impressive statistical trend spanning twenty orders of

magnitude in the mass of aquatic and terrestrial nonvascular and vascular plant

species. The annual growth in plant body biomass GT (net annual gain in dry

mass per individual) and MT (total dry mass per individual) are related by the

Fig. 2. Log–log bivariate plot of total annual growth rate in dry body mass per individual GT

versus TBM. Line segment denotes reduced major axis regression curves for the entire data set.
[adapted from Niklas154 with permission].
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empirical AR:

GT ∝ M
3/4
T . (13)

Figure 2 shows linear regression on logarithmically transformed data

logGT = log a+ 0.75 logMT (14)

and the parameter a is the intercept with the vertical axis. In the data analyses

recorded herein the terms weight, mass and volume are used almost interchange-

ably as measures of size. The allometry exponent is 3/4 for the data in Fig. 2 but

empirically differs from this value when the data sets are graphed individually. The

allometry coefficients of the separate data sets may vary as a function of habi-

tat as well. The agreement between the biomass data and the AR with exponent

3/4 is very suggestive but it must be viewed critically because of methodological

limitations.

Reich et al.174 analyzed data for approximately 500 observations of 43 perennial

plant species of coupled measurements of whole-plant dry mass and GT from four

separate studies. Collectively, the observations span five of the approximately 12

orders of magnitude of size in vascular plants.53 The result of each experiment

yielded an isometric scaling of b ≈ 1 and not b = 3/4 as did the scaling of GT to

TBM for whole plants. Consequently, even when data look as appealing as they do

in Fig. 2 things are not always what they seem.

2.1.3. Clearance curves

Another allometry phenomenon is the dependence of drug-dosing range on TBM

and is referred to as clearance.97 Zenobiotic clearance is the rate at which any foreign

compound not produced by an organism’s metabolism is passed from the organism.

The application of allometry ideas to pharmacokinetics and to determining human

parameters from those in animals is fairly recent.22,127,191 The early studies did

not address questions of variability in the allometry parameters and were primarily

concerned with whether the allometry exponent more closely tracked the value 2/3

or 3/4 by doing linear regression on log-transformed data.122

Hu and Hayton97 addressed the possible impact of statistical variability in the

AR parameters on the predicted pharmacokinetic parameter values. They found

considerable uncertainty in the value of the allometry exponent, which they fit to a

Gaussian distribution with mean value 0.74. Even though they could not determine

whether the variability in the allometry exponent was due to experimental error

or to biological mechanisms they did find that there was no systematic deviation

from the AR. However it appears that whether b = 3/4 or 2/3 depends on which

of the major elimination pathways is used, metabolism for the 3/4 value and renal

excretion for the 2/3 value.
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2.1.4. Physiology

The most studied of the interspecific ARs does not concern relative growth but is

that associating the average BMR measured in watts to average TBM measured in

kilograms of multiple species such that:

B = aM b . (15)

The metabolic rate refers to the total utilization of chemical energy for the genera-

tion of heat by the body of an animal and is often measured by the oxygen intake

during respiration.

The earliest physiologic model for the value of the allometry exponent in the

intraspecies AR was given by Sarrus and Rameaux.188 Schmidt–Nielsen195 records

that this team of a mathematician and a physician reasoned that the heat gener-

ated by a warm blooded animal is proportional to the volume and the heat loss

is proportional to the animal’s free surface. Experiments on dogs by Rubner183

supported their argument and lead to the wide acceptance of the “surface law” in

which b = 2/3. In Fig. 1 the “mouse-to-elephant” curve depicts the BMR for mam-

mals and birds plotted versus TBM on log–log graph paper spanning six orders of

magnitude. The solid line segment is the fit of the AR to the data and yields the

empirical value b ≈ 3/4.

As Niklas154 noted the expectation was that the metabolic rate would be pro-

portional to the 2/3 power of the TBM as prescribed by the surface law. Surpris-

ingly, this turned out not to be the case. The research of Kleiber109 and Brody24

revealed that the slope was closer to 3/4 than to 2/3. Subsequent observational

studies have reinforced the allometric pattern observed in the data predicted by

Eq. (15) including some relating the 3/4-rule to plants, see, for example, Hem-

mingsen.86 Consequently the phenomenological value of the allometry exponent b

remains controversial.47,71,91

Controversy also persists regarding the theoretical explanation as to why the

allometry exponent b should have a specific value. The simple geometrical argument

of Sarrus and Rameaux suggests b = 2/3 as reviewed in a number of excellent

sources.31,47,91 On the other hand, the quarter-power AR is explained by West,

Brown and Enquist (WBE) using geometric scaling arguments from fractal physics

to establish the value b = 3/4 and other quarter-power scaling laws in physiology,

see Sec. 4.

Heusner91 adopted geometric scaling arguments to obtain b = 2/3 in the AR

between BMR and TBM. He argued that the various other values experimentally

observed for the power-law index by investigators are a consequence of differing

values of the allometric coefficient a. He reasoned that two or more data sets with

b = 2/3 but with different values of a graph as parallel line segments on log–log

graph paper, but when the two or more data sets are grouped together and analyzed

as a single data set the aggregate is fit by a single line segment with net slope

b > 2/3. The same argument can be found in a number of other references.176,195

But unlike those earlier references Heusner91 concluded that it is the allometry
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coefficient that remains the central mystery of allometry and not the allometry

exponent. We investigate the implications of Heusner’s conjecture in Sec. 3 where

we numerically explore the implications of treating the allometry coefficient as a

random variable.

It is useful to list the various forms of physiological allometry given by Lindstedt

and Schaeffer122: pulmonary and cardiac allometry with b = −1/4; renal allometry

with b = −0.85; liver allometry with b = −0.85; pulmonary blood volume with

b = 1.0; cardiac output with b = 3/4 and pulmonary transit times with b = 1/4.

2.1.5. Information transfer

There are literally dozens of physiologic ARs for physiologic time τ , relative to clock

time t, that increases with increasing body size τ = aM b120 and describes chemical

processes such as the turnover time for glucose with b = 1/49 to the life span of

various animals in captivity with b = 0.20.185 Schmidt–Nielsen195 explains how a

variety of physiologic time scales such as the length of a heart beat and respiration

all scale with body size and from that deduce a number of interesting relations.

It is only recently however that Hempleman et al.88 hypothesized a mechanism to

explain how information about the size of an organism is communicated to the

organs within the organism. Their hypothesis involved matching the neural spike

code to body size to convey this information.

Hempleman et al.88 suggest that mass-dependent scaling of neural coding may

be necessary for preserving information transmission with decreasing body size.

They point out that action potential spike trains are the mechanisms for long

distance information transmission in the nervous system. They go on to say that

neural information may be “rate coded” with average spike rate over a time period

encoding stimulus intensity or “time coded” with the occurrence of a single spike

encoding the occurrence of a rapid stimulus transition. The hypothesis is that some

phasic physiological traits are sufficiently slow in large animals to be neural rate

coded, but are rapid enough in small animals to require neural time coding. These

trait include such activities as breathing rates that scale with b = −1/4.

They tested for this allometry scaling of neural coding by measuring action po-

tential spike trains from sensory neurons that detect lung CO2 oscillations linked to

breathing rate in birds ranging in body mass from 0.045 to 5.23 kg. While it is well

known that spike rate codes occur in the sensing of low frequency signals and spike

timing codes occur in the sensing of high frequency signals, their experiment was

the first designed to test the transition between these two coding schemes in a single

sensory network due to variation in body mass. The results of their experiments

on breathing rate was an allometry exponent in the interval −0.26 ≤ b ≤ −0.23

and although taken on a small number of birds their results do suggest a preserva-

tion of information transmission rates for high frequency signals in intrapulmonary

chemoreceptors and perhaps other sensory neurons as well. The implications of

these experiments strongly suggest the need to continue such investigations.
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On the more theoretical side Moses et al.149 apply the scaling ideas of metabolic

allometry developed by West et al.247 to information networks consisting of micro-

processors to form a network. Moses et al.149 use a fractal argument to construct a

two-dimensional hierarchal self-similar branching network, an H-tree that Mandel-

brot131 originally used in his discussion of the space filling behavior of the human

lung. They show that this branching network of microprocessors have a striking

similarity to such networks in organisms even though the latter has evolved by

natural selection and the former are designed by engineers.

Along this same line E. F. Rent, while an IBM employee in the 1960s, wrote a

number of internal memos (unpublished) relating the number of pins at the bound-

aries of an integrated circuit (X) to the number of internal components (Y ), such

as logic gates, to obtain an AR with b < 1.0. This rule has historically been used by

engineers to estimate power dissipation in interconnections and for the placement

of components in very large scale integrated (VLSI) circuit design. More recently

Rent’s Rule has been used to model information processing networks in the human

brain16 where the mass of grey and white matter are shown to satisfy an AR as first

noted by Schlenska.194 Beiu and Ibrahim18 suggested that the allometry exponent

for grey and white matter between species is identical to the Rent exponent within

a species and this was supported using MRI data by Bassett et al.16

2.2. Physical networks

Some of the oldest ARs involve physical networks, or more specifically geophys-

ical networks. The skeptic need only return to da Vinci’s scaling relation. In his

notebooks da Vinci explains the meaning of this equation not only in the context

of relating tree trunks to subsequent branches, but to the branchings of rivers as

well. Long before the conservation of energy and the continuity of fluid flow were

known to scientists, the enigmatic Italian painter, sculptor, military engineer and

anatomist understood the basics of hydrologic networks.

2.2.1. Geology and geomorphology

Horton’s law of river numbers is another empirical regularity observed in the topol-

ogy of river networks.95 As observed by Scheidegger192 the number of river segments

in successive order form a geometrical sequence such that, the

number of rivers with k tributaries ∝ R1−k
b . (16)

The bifurcation parameter Rb is the constant ratio between successive numbers of

river networks, known as Horton’s law of stream numbers nk/nk+1 = Rb and has

the empirical value between 4.1 and 4.7 in natural river networks,159,160 in contrast

to the random model that predicts a value of four. Note that the system of counting

begins at the smallest tributary that are the most numerous Rb > 1 and these feed

into larger tributaries that are fewer in number.
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Dodds and Rothman46 point out that universality arises when the qualitative

character of a network is sufficient to quantify its essential features, such as the

exponents that characterize scaling laws. They go on to say that scaling and uni-

versality have found application in the geometry of river networks and the statistical

structure of topography within geomorphology. They maintain that the source of

scaling in river networks and whether or not such scaling belongs to a single uni-

versality class is not yet known. They do provide a critical analysis of Hack’s law,

see also, Rodriguez–Iturbe and Rinaldo.182

2.2.2. Hydrology

Hack’s law is a hydrologic AR having to do with the drainage basins of rivers. Hack83

developed an empirical relation between mainstream length of a river network and

the drainage basin area at the closure of the river. Hack’s law is given by,

mainstreamlength ∝ (area)h , (17)

where h is the Hack exponent with the typical empirical value h ≈ 0.57. Hack

asserted that river networks are not self-similar.

Mandelbrot131 relates Hack’s exponent to the fractal dimension of the river net-

work and debates the interpretation of the equation. Feder57 observed that defining

a fractal dimension for river networks was obscure and required further study. A

modern version of this discussion in terms of hydrologic allometry is given by Ri-

naldo et al.181 who point out that optimal channel networks yield h = 0.57± 0.02

suggesting that feasible optimality178 implies Hack’s law. Another viable model is

given by Sagar and Tein186 that is geomorphology realistic giving rise to general

ARs in terms of river basin areas, as well as parallel and perpendicular channel

lengths.

Maritan et al.136 consider an analogy with the metabolic AR using M ∝ Bα,

that is, α = 1/b so that α = 1 + h with the limiting values α = 3/2 and h = 1/2

in the case of geometric self-similarity. Geometric self-similarity is the preservation

of the river’s shape as the basin increases in area. The observed values lie in the

range 1.5 ≤ α ≤ 1.6 and the scatter of individual curves (analog of intraspecies

data) is remarkably small. These values suggest that the branching nature of rivers

is fractal, that is, α > 3/2 in most cases. The ensemble average of Hack’s exponents

from different basins extend over 11 orders of magnitude and is indistinguishable

from h = 1/2.146 Maritan et al.136 conclude that like the interspecies metabolic rate,

the slope of the intraspecies h’s are washed out in the ensemble average, resulting

in the value h = 1/2.

2.3. Natural History

Natural History embraces the study, description and classification of the growth

and development of natural phenomena. The focus of investigation includes such
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important contemporary areas as ecology and paleontology, parts of which rely

heavily on AR and scaling.

2.3.1. Ecology

Ecology is the scientific study of the distribution, abundance and relations of or-

ganisms and their interactions with the environment. Such living networks include

both plant and animal populations and communities along with the network of re-

lations among organisms of different scales of organization. Of concern to us here

are the species traits determined by body size and how these in turn affect food

web stability. Woodward et al.261 along with many others point out that the largest

metazoans, for example, whales (108 grams) and giant sequoias, weigh over 21 or-

ders of magnitude more than the smallest microbes (10−13 grams).102,234 They go

on to stress the considerable variation in body mass among members of the same

food web.

We do not address the traditional linking of species through such mechanisms as

the prey–predator relation within food webs76 but instead we focus on body size.

The significance of body size has been systematically studied in ecology.27,35,102

Indentifying X with species abundance and Y with TBM in Eq. (2) there is, in

fact, an AR between the species at the base of a food web and the largest predator

at the top.35 We note that species-area power functions have a vital history in

ecology166,258 even though the domain of sizes over which the power law appears

valid is controversial.25,256

Woodward et al.261 emphasize that AR has been used to explain the observed

relations between body size and each of: home range size, nutrient cycling rates,

numerical abundance and biomass production. They speculate that body size may

capture a suite of covarying species traits into a single dimension, without the

necessity of having to observe the traits directly.

Brown et al.26 discuss the universality of the documented ARs in plants, ani-

mals and microbes; to terrestrial, marine and freshwater habitats; and to human-

dominated as well as “natural” ecosystems. They emphasize that the observed

self-similarity is a consequence of a few basic physical, biological and mathematical

principles; one of the most fundamental being the extreme variability of the data.

The variety of distributions of allometry coefficients and exponents are discussed

both phenomenologically and theoretically in subsequent sections.

Farr’s law29 is an example of the change in ARs in the transition from organ-

ismic to environmental allometry. Farr collected data on the number of patients

committed because of their mental condition and their mortality from a variety of

asylums in 1830s England.56 From these humble beginnings he was able to sum-

marize the “evil effect of crowding” into a relation between mortality rate R and

population density ρ96:

R = aρb . (18)
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Here we see that the size measure used in the metabolic AR, the mass, is replaced

with a measure of community structure, the population density. The ARs that cap-

ture life histories in ecology and sociology are often expressed in terms of numbers

of animals and areas in addition to body mass. Calder31 points out that size and

time seem to be the principle characteristics of life history and ecology.

The factors necessary for the formation of social groups with a restricted

geographic area are not understood, but certain ARs help clarify them. The popu-

lation density ρ of herbivorous mammals has been determined to be related to their

mass M by39 ρ−1 = cM0.75 where the animals freely roam on a “home range” of

given area: Ahr = c′M1.02. A similar relation exists for carnivores.145 Consequently,

as explained by Calder,31 herbivorous mammals above a certain size range over an

area greater than their per capita share of the local habitat. The degree of overlap

was empirically determined to be40 Ahrρ = c′′M0.34, where the empirical exponent

0.34±0.11 is statistically indistinguishable from that obtained by combining the sep-

arate exponents for the population density and area, that being, 1.02−0.75 = 0.27.

Calder conjectures that the greater the product Ahrρ the greater the intensity of

competition and the greater the desirability of social networks that contribute to

mutual tolerance within these groups. Makarieva et al.129 argue that animal home

range represents a biological footprint of the undisturbed state of an econetwork,

however the population density adapts to disturbances in the econetwork. Conse-

quently, the deviation of the home range-population product from isometry reflects

the degree of econetwork disturbance.

The AR between maximum abundance and body size for terrestrial plants N ∝

M−b was extended by Belgrano et al.19 to the maximum population densities of

marine phytoplankton with b = 3/4. They draw the implication that maximum

plant abundance is constrained by rates of energy supply in both terrestrial and

marine networks as dictated by a common AR. Earlier investigators found b >

3/4.37,49

2.3.2. Zoology and acoustics

Mice squeak, birds chirp and elephants trumpet due to scaling. Fitch59 discusses the

relationship between an organism’s body size and acoustic characterization of its

vocalization under the rubric of acoustic allometry. Data indicate an AR between

palate length (the skeletal proxy for vocal tract length) and body mass for a variety

of mammalian species. He shows that the interspecies allometry exponent attains

the geometric value of three in the regression of skull length and body mass, whereas

the intraspecies allometry exponent varies a great deal. The significant variability

in the intraspecies allometry exponent suggest taxon-specific factors influencing the

AR.137,199

Fitch59 gives the parsimonious interpretation that the variability in the in-

traspecies allometry exponent could be the result of each species adopting allomet-

ric scaling during growth as postulated by Huxley, with a different proportionality
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factor for each species. On the other hand, the interspecies allometry exponent

could result from the common geometric constraints across species due to the wide

range of body sizes. He concludes that the AR between vocal tract dimensions

and body size could provide accurate information about a vocalizer’s size in many

mammals.

2.3.3. Paleontology

Pilbeam and Gould164 provide reasons as to why body size has played such a

significant role in biological macroevolution. The first is the statistical generalization

known as Cope’s Law or Rule, which states that population lineages increase in

body size over evolutionary time scales,36 that is, the body size of a species is an

indication of how long it has survived on geological time scales. A second reason is

the one mentioned earlier, Galileo’s observation that large organisms must change

shape in order to function in the same way as do their smaller prototypes.

One quantitative measure of evolution is the development of the brain in mam-

mals at various stages of evolution. Jerison99 showed that the brain-body relation

given by Eq. (2) is satisfied by mammals with an exponent that is statistically

indistinguishable from 2/3. He suggested that a may be an appropriate measure

of brain evolution in mammals as a class, following the proposal of Dubois48 that

a quantitative measure of cephalization in contemporary mammals be based on

the ratio; a = brain weight/(body weight)b. These hypotheses were directly tested

by Jerison99 using endocranial volumes and body volumes for fossil mammals

at early and intermediate evolutionary stages. The data did in fact support the

hypothesis.

White and Gould253 emphasize in their review of the meaning of the allome-

try coefficient a that it had generated a large and inconclusive literature. Reiss176

notes that if brain mass is regressed on TBM across individuals in a species the

slopes are shallower than of regressions calculated across mean values for different

species within a single family (genus). This argument had also been presented by

Gould80 who emphasized the importance of the allometry coefficient in the geomet-

ric similarity of allometric growth. This interpretation of the allometry coefficient

was at odds with the belief of the majority of the scientific community at the time

that the allometry coefficient was independent of body size. This latter view is also

contradicted by the data analysis in Sec. 3.

Allometry has been used by Alberch et al.2 as the first step in creating a uni-

fying theory in developmental biology and evolutionary ecology in their study of

morphological evolution. They demonstrate how their proposed formalism relate

changes in size and shape during ontogeny and phylogeny.

3. Data Statistics

In this section the phenomenology of analyzing AR measurement using statistics

is discussed; collecting data, identifying patterns (laws) in the data and developing
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methods of statistical analysis. Warton et al.220 point out that fitting a line to a

bivariate data set is not a simple task and the AR literature is filled with debate

over the proper methodology. Sir Julian readily adopted the statistical approach of

linear regression to Eq. (3) on multiple data sets to determine the allometry coef-

ficient a and exponent b. The sophisticated statistical techniques such as principle

component analysis were not available to Sir Julian and although they can be found

in the modern AR literature least-square regression still appears to be the method

of choice.73,189

Measures of complex phenomena always contain uncertainty and the data sets

invariably fluctuate from measurement to measurement. Thus, X(t) and Y (t) are

stochastic variables, and by implication X(Y ) is a random function of its argu-

ment as well. Consequently the deterministic algebraic equations relating network

size and network function never unambiguously represent what is actually being

measured. Subsequently, we examine the corresponding mathematical modeling,

shifting the focus from the dynamic stochastic variable to the associated dynamic

pdf.

We examine the phenomenology of the random data from measurements of var-

ious properties of allometry networks that determine empirical ARs. In particular

we focus on how allometry coefficients and exponents are interpreted given that the

data on which they are based fluctuate to such a large extent. Part of the reason

for taking this approach is that a significant number of scientists adopt the view-

point that fluctuations reflect lack of control and/or ignorance about what is being

measured. Here we adopt the more sympathetic view that networks are generically

random because they are dynamic and complex in which case statistics provide

information about the fundamental nature of that complexity.

3.1. Fluctuations

All complex dynamic networks are stochastic, either due to intrinsic nonlinear dy-

namics producing chaos,123,124,155 or due to coupling of the network to an infinite

dimensional albeit unknown environment,118 or both; completely aside from mea-

surement errors. Consequently, it is necessary to understand how statistical un-

certainty may be included in modeling allometry data. Kaitaniemi104 pointed out

that the potential information content of the allometry coefficient has been largely

neglected, an observation also made by Glazier73 among others. Kaitaniemi exam-

ined the different ways this parameter may vary for different sources of random

fluctuations. Here we follow a similar strategy, but we use actual data rather than

computer generated random fluctuations.

The normal or Gauss pdf suggests that the statistical variations between the

variables in the AR Eq. (2) may be additive leading some scientists70,130,203 to

propose the form:

Y = āX b̄ + η , (19)
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where η depicts the random fluctuations and the overbars denote the fitted values

of the parameters. Packard and Boardman157 also investigate the regression of data

to a three-parameter power law that does not pass through the origin

Y = Y0 + āX b̄ + η . (20)

In the near isometry case where b̄ ≈ 1 linear regression analysis is appropriate

and additive fluctuations provide a satisfactory representation of the statistical

variability. On the other hand when the allometry exponent is substantially different

from unity the determination of the nature of the fluctuations requires preliminary

statistical analysis, see, for example, Packard.156

Packard and Boardman157 emphasize that the additive form of fluctuations in

ARs is quite different from the situation involving the logarithmically transformed

data. For the transformed data introducing additive random fluctuations yields:

log Y = log ā+ b̄ logX + η , (21)

and the empirical constants ā and b̄ are fit to the transformed data. In terms of the

original AR we obtain:

Y = āeηX b̄ (22)

with the fluctuations being exponentially amplified through eη. It is evident that

when the fluctuations are considered to be focused in the allometry coefficient, as

they are here, they are multiplicative. The multiplicative character of the fluctu-

ations implies that the influence of the random variations is amplified far beyond

their additive cousins.

They emphasize that the focus of the research on log-transformed data is to

characterize patterns of variation in morphology, physiology and ecology in organ-

isms spanning a broad range in body size in an attempt to identify underlying

principles in the design of biological networks, see, for example, Brown et al.27 and

references therein. They go on to assert that many of the patterns identified by

this research are inaccurate and misleading and these mischaracterizations likely

contribute to the ongoing debate about ways in which animals are constructed.

We saw that fluctuations in the log-transformed data may be equivalent to mul-

tiplicative fluctuations in the original data. So the important question is whether it

is necessary to perform the logarithmic transformation at all. Packard and Board-

man157 point out that the original motivation for the log-transform was to linearize

the equations thought to represent the data and therefore facilitate the implemen-

tation of graphical and statistical analysis.162,203 However, they go on to show the

biasing problems associated with log-transforms using computer generated data

sets and caution that with the present day computer software for fitting nonlinear

equations linearization is no longer a sufficient rationale for log-transforms. So are

there other reasons to transform the data?

Kerkhoff and Enquist106 strongly disagree with the conclusions of Packard

(2008) that standard methods for fitting allometry models produce “biased and
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misleading” results. They point out that most biological phenomena are inherently

multiplicative63,66 and it is the proportional rather than absolute variation that

matters. The multiplicative influence of noise seen in the log-transformed data is

often misinterpreted as bias.203,263 Kerkhoff and Enquist106 maintain that the mul-

tiplicative error model is an appropriate feature, rather than a defect, of standard

allometry analysis. Recent research suggests that geometric error resulting from

multiplicative fluctuations should be the default standard for parameter estimation

in biology66,81 and not additive error.

3.2. Phenomenological distributions

We now consider the statistics of the fluctuations in the AR using data from the

literature. The data relating the average energy expended by a given species in watts

to the average TBM of that species in kilograms for 391 species of mammal is plotted

in Fig. 3 and also in Heusner91 as well as in Dodds et al.47 A fit of Eq. (3) to these

data that minimizes the mean-square error is a straight line on double logarithmic

graph paper and was found to have slope b̄ = 0.71 ± 0.008 so that empirically

2/3 < b̄ < 3/4 and the allometry coefficient ā = 0.02. As West andWest245 reviewed

Heusner90 had somewhat earlier questioned Kleiber’s value of 3/4 and concluded

from data analysis that this value of 3/4 was a statistical artifact. Feldman and

McMahon58 agreed with Heusner’s conclusions, but suggested that there was no

compelling reason for the intraspecies and interspecies allometric exponents to be

the same, with the intraspecies exponent being 2/3 based on geometric similarity

and the interspecies exponent being 3/4 based on McMahon’s elastic similarity.

There is a great deal of variability around the line segment that gives the AR

model in Fig. 3. West and West245 interpret these fluctuations as random variations

Fig. 3. The linear regression to Eq. (3) for Heusner’s data91 is indicated by the line segment.
The slope of the dashed line segment is 0.71± 0.008.
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in either the allometry coefficient or the allometry exponent. If the fluctuations are

assumed to be contained in the allometry coefficient we can define

a

ā
= eη =

B

āM b̄
(23)

so that each data point in the (X,Y )-plane yields a single value of the allometry

coefficient. In a complex network a linear response such as suggested by Fig. 3 does

not necessarily occur since there can be independent fluctuations in both X and

Y resulting in what Warton et al.220 call equation error; also known as natural

variability, natural variation and intrinsic scatter. In the present case the AR is not

predictive, but instead summaries vast amounts of data.255 This natural variability

is manifest in fluctuations in the allometry parameters (a, b).

West and West242 calculate the statistical distribution for the random allometry

coefficient determined from Eq. (23) under the assumption that b̄ is fixed. The

variability in the allometry coefficient determined by the data is partitioned into

20 equal sized bins in the logarithm of the allometry coefficient. A histogram is

then constructed by counting the number of data points within each of the bins

as indicated by the dots in Fig. 4. The solid line segment in this figure is the best

fit to these 20 numbers with minimum mean-square error. The functional form

for the histogram is indicated by the curve in Fig. 4241,242 and the quality of the

fit to the diversity data is determined by the correlation coefficient r2 = 0.98.

The normalized histogram G(ln a′) on the interval (0,∞) using the transformation

Fig. 4. The histogram of the deviations from the prediction of the AR using the data depicted
in Fig. 3 partitioned into 20 equal sized bins in the logarithm of the normalized variable a′ = a/ā.
Here ā = 0.02 and b̄ = 0.71. The solid line segment is the best fit of Eq. (24) to the 20 histogram

numbers, which yields the power-law index α = 2.79 and the quality of the fit is measured by the
correlation coefficient r2 = 0.98. (Reproduced from West and West242 with permission).
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G(ln a′)d ln a′ = P (a′)da′ gives the empirical pdf:

P (a′) =
α

2





1

a′1−α
; a′ ≤ 1

1

a′1+α
; a′ ≥ 1

(24)

and α = 3.28 yielding a standard deviation 0.017 in essentially exact agreement

with the empirical data. Note that this coefficient differs from the best fit value

given in the caption of Fig. 4 but this results in only a 1% change in the value

of r2.

The same inverse power-law form is obtained with α = 3.89 and r = 0.96 using

the avian BMR data of McNab142 for 533 species of bird. The distribution of the

deviations from the AR for both the avian and mammalian data sets fall off as

inverse power laws on either side of a = ā. Equation (24) quantifies the qualitative

argument used earlier to associate power-law pdf ’s with multiplicative fluctuations,

see also Sec. 5.

Alternatively the fluctuations can be assumed to be contained within the allom-

etry exponent as:

η =
log(B/ā)

logM
− b̄ . (25)

If we assume b̄ = 0.71 and a = ā then Eq. (25) provides us with the statistical

fluctuations in the allometry exponent are used to construct a histogram exactly as

we did previously. The solid line segment in Fig. 5 is the best fit to the 20 numbers

of the histogram with minimum mean-square error. The functional form for the

histogram of deviations from the allometry exponent b̄ is determined by the curve

in Fig. 5 and the quality of the fit to the histogram is determined by the correlation

coefficient r2 = 0.97. The histogram is fit by the Laplace pdf

Ψ(b) =
β

2
exp[−β|b− b̄|] , (26)

with the empirical value β = 12.85.

3.2.1. Co-variation of allometry coefficient and exponent

We have obtained two separate distributions for two different parametric representa-

tions of the same data. As pointed out by Glaizer73 species within a taxon represent

a cloud of different metabolic rates and not the linear metabolic level determined by

linear regression. His cloud is incorporated into the present context by abandoning

the assumption that the allometry coefficient and exponent are independent and

requiring that the probability of a given fluctuation is the same regardless of the

representation so that P(a)da = Ψ(b)db. In order to calculate a nonzero Jacobian

of the transformation between the two allometry parameters requires that they be

functionally related. West and West243 assume b = b̄−c lna, so that by inserting the
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Fig. 5. The histogram of the deviations from the prediction of the AR using the allometry
exponent fluctuation data partitioned into 20 equal sized bins. The solid line segment is the best
fit of Eq. (26) with ∆b ≡ b− b̄, to the 20 histogram numbers, and the quality of the fit is measured
by the correlation coefficient r2 = 0.97. (Reproduced from West and West242 with permission).

allometry exponent pdf Eq. (26) into that for equal probabilities and simplifying

yields:

P(a) =
βc

2





aβc−1 for a ≤ ā

1

aβc+1
for a ≥ ā

(27)

and comparing Eq. (27) with Eq. (24) they identify α = βc and obtain the empirical

pdf for the allometry coefficient P (a′)da′ = P(a)da. Using the fitted values α = 2.79

and β = 12.85 yields c = 0.217 and consequently the empirical transformation can

be written as:

b = 0.71− 0.50 log10 a . (28)

Note that this functional dependency of the allometry exponent on the allometry co-

efficient is consistent with the empirical co-variation relation obtained by Glazier73

who used linear regression on large amounts of parametric data. West and West243

emphasize that this co-variation of the allometry parameters implies that there is

no universal value for the allometry exponent.

3.2.2. Other scaling distributions

The tent shaped distribution in Fig. 5 also arises using a different approach to

quantifying the variability of BMR. Labra et al.115 investigate BMR fluctuations

by considering O2 volume time series and examining the scaling of the high fre-

quency fluctuations across species. They determined empirically that the standard
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deviation in the BMR is proportional to the average BMR by the scaling law:

SDBMR ∝ Bλ

and λ = −0.352± 0.072. This relation is known as the power curve in the ecology

literature85 and was discovered by Taylor210 in his determination of the number of

new species that can be found in a given plot of ground. It was expanded to the

determination of scaling in time series by Taylor and Woiwold211 and applied in

physiology as Taylor’s law in West.238

On the other hand Labra et al.115 determined the standard deviation of BMR

to be proportional to a power of the TBM:

SDBMR ∝ Mγ

and γ = −0.241±0.103. Consequently, combining the two empirical expressions for

the variance we obtain:

B ∝ Mγ/λ (29)

with γ/λ = 0.69 a value consistent with the many fits made to the allometry data.

They determine that all the species they studied show the same invariant distribu-

tion of BMR fluctuations, regardless of the difference in their phylogeny, physiology

and body size. The distribution has the form Eq. (26) with the independent vari-

able given by the fluctuation in the BMR ∆B and β =
√
2/SDBMR; in terms of the

scaling variable Bsc ≡
√
2∆B/SDBMR curves for 12 different species collapse onto

a single universal curve.

3.2.3. Paleobiology and scaling

Phenomena with intermittent properties described by inverse power-law statistics

are apprarently ubiquitous233 and paleobiology is no exception. Bak and Boettcher8

interpreted Charles Lyell’s125 uniformitarianism as meaning that all geologic activ-

ity should be explainable in terms of readily available processes working at all times

and all places with the same intensity. They go on to argue that the existence of

earthquakes, volcanic eruptions, floods and tsunamis all indicate that the physical

world is not in equilibrium. Moreover the intermittent nature of the paleontological

record indicates that macroevolution is also out of equilibrium and consequently

the inverse power-law statistics are possibley suitable for their description.

Eldredge and Gould52 argued that punctuated change dominates the history of

life and that relatively rapid episodes of speciation constitute biological macroevo-

lution. The intermittency of speciation in time has been explained by one group

as punctuated equilibria51 and has been indirectly related to fractal statistics by

identifying it as a self-organized critical phenomenon.8 In the self-organized criti-

cality model of speciation Bak and Boettcher8 associate an avalanche of activity

with exceeding a threshold and the distribution of returns to the threshold with a

“devil’s staircase” having a distribution of steps of stasis of lengths given by the
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inverse power-law pdf, that is, T−γ with γ = 1.75. Moreover, as explained by Snep-

pen et al.,206 the number of genera N , with a lifetime T can be fitted very well

to a power law T−β with β ≈ 2.173 More recently Rikvold and Zia179 put forward

an explanation of punctuated equilibrium based on 1/f noise in macroevolutionary

dynamics that also yields an inverse power-law pdf for the life time of ecological

communities with β = 2.

Solé et al.208 analyzed the statistics of the extinction fossil record (time series)

and determined that the power spectrum has the form:

S(f) ∝ 1/fµ ,

with 0 < µ < 2. They find 0.80 ≤ µ ≤ 0.90 and argue that these values support

the self-organized criticality interpretation of extinction. On the other hand, Plot-

nick and Sepkowski165 also find a 1/f power spectrum with a power-law index for

extinction consistent with Solé et al.208 and indices for species generation of ap-

proximately half that for extinction. However the latter authors conclude that their

results are incompatible with self-organized criticality and instead are compatible

with multifractal self-similarity in both the extinction and generation records.

4. Models of Allometry

Two distinct methods dominate the many derivations of AR. One method is based

on the first-principles reductionistic approach starting from an assumed form for the

underlying mechanisms and from that deducing the necessity of Eq. (2). The other

method is phenomenological involving statistical analysis and identifying patterns

in the data analysis and from these patterns deducing the necessity of the empirical

AR. A number of the statistical methods were reviewed in the previous section. The

ARs stand out as empirical relations that have withstood the test of time, whereas

the same cannot be said for the models developed to explain how they come about.

In this section we examine attempts to formulate general principles from which the

underlying mechanisms, whether reductionist or statistical, producing the ARs can

be identified.

The search for an unifying principle parallels such historical activities as the

determination of “least action” in analytic mechanics or optimization in control

theory. More recently investigators have rediscovered Newton’s “principle of simil-

itude”’ introduced in the Principia (II, Proposition 32). Scaling and the princi-

ple of similitude have been present in the study of complex physical phenomena

since physics became a science. In modern times it is RG theory that provides a

formalism for determining how force is transferred across multiple scale.103,111,259

Part of the reason for exploring this approach is that fractal geometry and frac-

tal statistics are able to capture some of the regularity observed in vast amounts

of data in the life and social sciences in addition to the physical sciences. The

implementation of fractal geometry and RG theory to study the architecture of

physiological forms,17,228,247 interacting networks of chemical reactions45,78,169 and
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the topology of ecological webs27 over the past quarter century has lead to some

remarkable insights. In particular the descriptive success of investigations using frac-

tals15,131,135,143 suggests that branching networks with fractal architectures have an

evolutionary advantage230,231,235 as do fractal stochastic processes.236

4.1. Optimization principles

Optimization provides one of the best recipes for determining network dynamics

consistent with a given set of constraints. It is through the specification of the

constraints that insight into a phenomenon is introduced. The biological sciences

employ ideas such as energy minimization; the minimal use of materials along with

the maximization of efficiency. So whether the extremum is a minimum or maximum

depends on one’s purpose and the quantity being varied.

4.1.1. Energy minimization

Scaling relations in living networks result from the balancing of various constraints.

One such biological balancing is that of energy utilization against the energy cost of

carrying out a biological function. A technique that has been used both implicitly

and explicitly in the derivation of ARs is supplying nutrients to various parts of

an organism through the venous and capillary networks as well as through the

respiratory network. Murray150 considered a fluid with viscosity ν and laminar flow

Q within a tube of length l and radius r. The flow had to overcome the vascular

resistance that generates a pressure difference along the length of the tube given

by Poiseuille’s law ∆p = 8lνQ/πr4.

A constraint on the flow is the cost of transporting fluid of cylindrical volume

V = πlr2 along the tube so that introducing c as the cost factor the total work to

be done per unit time is given by:

E = Q∆p+ cV =
8lνQ2

πr4
+ cπlr2 . (30)

Consequently, minimizing this expression with respect to the radius yields the opti-

mal flow: Q = Cr3 with the constant C =
√
cπ2/16ν. The cubic dependence of the

flow rate on radius is known as Murray’s law223 and is indicative of the maximum

efficiency of the flow.

Murray151 subsequently extended his result to bifurcating networks such as

occurs in bronchial airways. The flow from a parent vessel of radius r0 branches

into two daughter vessels r1 and r2 such that the flow divides:

Q0 = Q1 +Q2 .

Therefore inserting Murray’s law into this expression yields da Vinci’s equation with

α = 3 and in the case of equal radii in the daughter branches r1 = r2 we obtain

the scaling relation r1 = 2−1/3r0. Thus, the maximally efficient bifurcating network

in terms of energy transport cost has radii decreasing as the cube root of two. As
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Fig. 6. Sketch of a branching structure such as a blood vessel or bronchial airway with the
parameters used in a bifrucating network model.

pointed out by Weibel223 this last result is also known as Murray’s law. However

this law was actually first formulated by Hess89 for blood vessels and subsequently

is more properly called the Hess–Murray law.

4.1.2. Optimal design

Rashevsky172 introduced the principle of optimal design in which the material used

and the energy expended to achieve a prescribed function is minimal. He applied the

principle to the basic problem of how the arterial network could branch in space

in order to supply blood to every element of tissue. To address this problem he

used the model of a bifurcating branching network supplying blood to a restricted

volume and reducing the total resistance to the flow of blood. His purpose was to

determine the condition imposed by the requirement that the total resistance is

minimum.

Here we assume the branching network is composed of N generations from the

point of entry (0) to the terminal branches (N). A typical tube at some intermediate

generation k has length lk, radius rk and pressure drop across the length of the

branch ∆pk as sketched in Fig. 6. The volume flow rate Qk is expressed in terms

of the flow velocity averaged over the cross sectional area uk : Qk = πr2kuk. Each

tube branches into n smaller tubes with the branching of the vessel occurring over

some distance that is substantially smaller than the lengths of the tubes of either

generation. Consequently, the total number of branches generated up to generation

k is Nk = nk. The pressure difference at generation k between the ends of a tube
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is given by a suitably indexed version of Poiseuille’s law and the total resistance to

the flow is given by the ratio of the pressure to flow rate

Ωk =
∆pk
Qk

=
8νlk
πr4k

. (31)

The total resistance for a network branch with m identical tubes in parallel is

1/m the resistance of each individual tube. Thus, in this oversimplified case we can

write the total network resistance as:

ΩT =
8νl1
πr40

+
8ν

π

N∑
j=1

1

Nj

lk
r4j

. (32)

In order to minimize the resistance for a given mass Rachevsky first expressed the

initial radius r0 in terms of the total mass of the network. The optimum radii

for the different branches of the bifurcation network having the total mass M are

then determined such that the total resistance is a minimum ∂ΩT /∂rj = 0 yielding

the equality rk = N
−1/3
k r0. The ratio of the radii between successive generations

is rk+1/rk = (Nk/Nk+1)
1/3so that inserting the number of branches at the kth

generation Nk = nk yields:

rk+1/rk = n−1/3 , (33)

yielding an exponential reduction in the branch radii across generations. Note the

formal similarity of this ratio to Horton’s law in which the ratio of numbers of river

branches is independent of generation number.

Rashevsky considered the bifurcating case n = 2 where the ratio of radii reduces

to rk+1/rk = 2−1/3 = 0.794. This is the classic “cube law” branching of Thomp-

son213 in which he used the “principle of similitude”. The value 2−1/3 was obtained

by Weibel and Gomez222 for the reduction in the diameter of bronchial airways for

the first ten generations of the bronchial tree. However they noted a sharp devia-

tion away from this constant fractional reduction after the tenth generation. The

value 2−1/3 was also obtained by Wilson260 who explained the proposed exponen-

tial decrease in the average radius of a bronchial tube with generation number by

showing that this is the functional form for which a gas of given composition can

be provided to the alveoli with minimum metabolism or entropy production in the

respiratory musculature. He proposed minimum entropy production69 as the design

principle for biological networks to carry out a given function.

The deviation from classical (exponential) scaling above generation ten shown in

Fig. 7 was eventually explained using an alternative model of the bronchial airways

in terms of fractal statistics228 as we subsequently discuss.

4.2. Metabolic allometry

Barenblatt and Monin14 proposed that metabolic scaling might be a consequence

of the fractal nature of biology, but they did not provide a mechanistic model for its

1230010-29

In
t. 

J. 
M

od
. P

hy
s. 

B
 2

01
2.

26
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 JO

H
N

S 
H

O
PK

IN
S 

U
N

IV
ER

SI
TY

 M
IL

TO
N

 S
 E

IS
EN

H
O

W
ER

 L
IB

R
A

R
Y

 o
n 

10
/2

3/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



	  	
144

July 3, 2012 15:35 WSPC/Guidelines-IJMPB S0217979212300101

D. West & B. J. West

Fig. 7. As the bronchial tree branches out, its tubes on average decrease in size. A theory con-
sistent with the Principle of Similitude213 predicts that their diameters should decrease by about
the same ratio from one generation to the next; exponential decline. This semilog graph shows
measurements from Weibel and Gomez222 for 23 generations of bronchial tubes in the human
lung. The prediction is a straight line that fits the anatomic data (dots) until about the tenth
generation, after which they deviate systematically from an exponential decline. [adapted from
West and Goldberger.229]

description. This shortcoming has been overcome by a number of investigators who

have devised numerous fractal models to describe AR in a variety of contexts.228,247

4.2.1. Elastic similarity model

The first model to analytically predict the allometry exponent 3/4 was constructed

by McMahon.139,140 His argument rests on the observation that the weight of a col-

umn increases more rapidly with size than does its strength. Moreover as discussed

by Schmidt–Nielsen195 if the column is tall and slender it can fail due to elastic

buckling in which small lateral displacements exceed the elastic restoring forces.

For a sufficiently slender column with Young’s elastic modulus E and density ρ the

critical length of a column of diameter d is:

lcr = k(E/ρ)1/3d2/3 (34)

and k is a constant. The elastic criteria of McMahon is therefore given by l3 ∝ d2.

The weight of the column is given by the product of the density, length and cross-

sectional area,

Mg = ρd2/3πd2/4 ,

where the length has been replaced using the elastic criteria yielding d ∝ M3/8.
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The implications for allometry of the scaling between cylinder diameter and

mass was discussed by Calder31 using the symmorphosis hypothesis of Taylor and

Weibel:212 “. . . is regulated to satisfy but not exceed the requirements of the func-

tional system”.237 First off we recognize that locomotion requires the contraction

of muscles. During contraction, muscles exert a force that increases with the cross-

sectional area of the muscle. The power output of the muscle is the work done per

unit time and may be equated with the metabolic rate, the product of the force

generated by the muscle and the velocity u of the shortening of the muscle B ∝ d2u.

The velocity of the shortening of the muscle appears to be a size-independent con-

stant from species to species92 so that using these two equations for the diameter

yields:

B ∝ M3/4 .

Consequently, the allometry exponent 3/4 in McMahon’s elastic similarity model

is required to maintain the flow of energy to the working muscles and is consistent

with the principle of symmorphosis.

Versions of the above argument given by both Calder31 and Schmidt–Nielsen195

seem to explain the value of the allometry exponent for warm blooded animals.

Dodds et al.47 critique McMahon’s model by noting that there is no compelling

reason why the power output of muscles should be the dominant factor in the scaling

of BMR. Moreover, Savage et al.189 point out that while the elastic similarity model

might apply to the bones of mammals or the trunks of trees that have adapted to

gravitational forces, it is doubtful that it is applicable to aquatic or unicellular

organisms that also display an allometry exponent of 3/4.87

4.2.2. WBE model

West, Brown and Enquist247 (WBE) published a quantitative model of metabolic

AR that has had significant impact on how a significant fraction of today’s bi-

ology/ecology community understands metabolic ARs. WBE model nutrient dis-

tribution within a hierarchal network in which vessels become narrower, shorter

and more numerous between successive levels proceeding from the initial to the

terminal level reminiscent of representations of river branchings. The scaling in

the transport network is a consequence of the constraints imposed by three as-

sumptions: (1) The entire volume of the organism is crammed with a space-filling

branching network. (2) The tube properties at the terminus of the network are

size-invariant. (3) The energy required to distribute resources using this network

is minimal, that is, the hydrodynamic resistance of the network is minimized. We

note their claim that this model is the origin of universal scaling laws in biol-

ogy248,249 with b = 3/4. However we recall at the start that the existence of an

empirical exponent b = 3/4 for metabolic AR has been questioned by numer-

ous investigators47,91,113,114,128 and we address these concerns and others in due

course.
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WBE introduce two parameters to characterize the network branching process,

βk = rk+1/rk the ratio of successive branch radii, as was done in the energy mini-

mization arguments172 and the other is γk = lk+1/lk, the ratio of successive branch

lengths. They conclude that the total number of terminal branches scales with TBM

as NT = (M/M0)
b. The total number of branches at level k is Nk = nk. Conse-

quently at the network terminus the self-similarity of the network yields NT = nN

and consequently the total number of branches is:

N = b ln(M/M0)/ lnn . (35)

Rashevsky’s energy minimization argument indicates that the transport of nutrients

in complex networks is maximally efficient when βk is independent of k. This is the

“fractal” scaling assumption made by WBE.

The estimates of the ratio parameters required two separate assumptions. To

estimate the ratio of lengths WBE assume that the volume of a tube at generation k

can be replaced by a spherical volume of diameter lk and in this way implement the

space-filling assumption. The conservation of volume between generations therefore

leads to the space filling condition:

(lk+1/lk)
3 ≈ Nk/Nk+1 = n−1

and consequently to the k-independent parameter

γ = γk = n−1/3 .

They maintain that this level-independent scaling of the lengths is a generic prop-

erty of all the space-filling networks they consider. This condition for an n-branching

network with a reduction in size of n−1/3 between successive generations yields us-

ing the definition for the fractal dimension D = logn/ logn1/3 = 3.

A separate and distinct assumption is made to estimate β using the classic

rigid-pipe model to equate the cross-sectional areas between successive generations:

πr2j = nπr2j+1, so that we have

β = βk = n−1/2 .

Note that this scaling of β differs from the ratio parameter obtained using energy

minimization. Inserting these values of the scaling parameters into the expression

for b yields the sought after exponent b = 3/4. This value of the exponent in turn

determines a number of other quarter-power scaling laws.

WBE point out that this is strictly a geometrical argument applying only to

those networks that exhibit area-preserving branching. Moreover the fluid velocity

is constant throughout the network and it is independent of size. They go on to

say that these features are a natural consequence of the idealized vessel-bundle

structure of plant vascular networks in which area-preserving arises automatically

because each branch is assumed to be a bundle of nN−k elementary vessels of the

same radius. They recognized that this is not the situation with vascular blood

flow where the beating of the heart produces a pulsating flow that generates a very
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different kind of scaling. Area-preserving is also not true in the mammalian lung

where there is a distribution of radii at each level of branching.

A physical property that the area preserving condition violates is that blood

slows down in going from the aorta to the capillary bed. Here WBE return to the

principle of energy minimization and as stated by West248 assert that to sustain a

given metabolic rate in an organism of fixed mass, with a given volume of blood,

the cardiac output is minimized subject to a space-filling geometry. This variation

is essentially equivalent to minimizing the total impedance since the flow rate is

constant and again yields the Hess–Murray law β = n−1/3 corresponding to area-

increasing branching.6,190 This change in scaling from the area-preserving n−1/2

to the area-increasing n−1/3 solves the problem of slowing down blood flow to

accommodate diffusion at the capillary level. Moreover, the variation also leads to

an allometry exponent b = 1. Such an isometric scaling (b = 1) suggests that plants

and animals follow different allometry scaling relations as was found.174,201

A detailed treatment of pulsate flow is not straightforward and will not be

presented here, but see Savage et al.190; Silva et al.201 and Apol et al.6 for details

and commentary in the context of the WBE model. We do note that for blood flow

the walls of the tubes are elastic and consequently the impedance is complex, as is

the dispersion relation that determines the velocity of the wave and its frequency.

Consequently pulsate flow is attenuated32,60 and WBE argue that the impedance

changes its r-dependence from r−4 for large tubes to r−2 for small tubes. The

variation therefore changes from area-preserving flow β = n−1/2 for large vessels to

dissipative flow β = n−1/3 for small vessels where blood flow is forced to slow. Thus

βk is k-dependent in the WBEmodel for pulsate flow and at an intermediate value of

k the scaling changes and this changeover value is species dependent. These results

are contradicted in the more extensive analysis of pulsate flow by Apol et al.,6 who

conclude that Kleiber’s law remains theoretically unexplained.

Kozlowski and Konarzewski113 critique the apparent limitations of the WBE

model assumptions. The size-invariance assumption has been interpreted by them

to mean that NT ∝ M , that is, the terminal number of vessels scales isometrically

with size and consequently causes the number of levels to be a function of body

size since more levels are required to fill a larger volume with the same density of

final vessels. However Brown et al.28 assert that NTVT ∝ M so that

NT ∝ M3/4 (36)

to which Kozlowski and Konarzewski114 respond that such mass dependence is

an arbitrary assumption and is not proven, see also Dawson.43 Etienne et al.54

reconstruct the WBE model without making the self-similarity assumption and in

so doing satisfy the concerns of Kozlowski and Konarzewske.113,114 The arguments

remain unresolved and Cyr and Walker38 refer to the assumption embodied in

Eq. (36) as the illusion of mechanistic understanding and maintain that after a

century of work the jury is still out on the magnitude of the allometry exponents.

Riisg̊ard180 argues that respiration and growth are integrated through the energetic
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costs of growth and that this explains why the b value is not a “natural constant”

and that a “3/4 power scaling law cannot be deduced from the interplay between

pure physical and geometric constraints of the transport of oxygen.

A quite different critique comes from Savage et al.190 who emphasize that the

WBE model is only valid in the limit N → ∞, that is, for infinite network size (body

mass) and that the actual allometry exponent predicted depends on the sizes of the

organisms considered. They calculate that the AR between BMR and TBM have

corrections for finite N given by:

M = a1B + a2B
4/3 (37)

from which it is clear that b = 3/4 only occurs when a2B
1/3 ≫ a1. This inequal-

ity is not satisfied for bodies of finite size. In their original publication WBE ac-

knowledged the potential importance of such finite-size effects, especially for small

animals, but the magnitude of the effect remained unspecified. Using explicit ex-

pressions for the coefficients in the WBE model Savage et al.190 show that when

accounting for these corrections over a size range spanning the eight orders of mag-

nitude observed in mammals a scaling exponent of b = 0.81 is obtained. Moreover in

addition to this strong deviation from the desired value of 3/4 there is a curvilinear

relation between the TBM and the BMR in the WBE model given by:

lnM = ln a2 +
4

3
lnB + ln

(
1 +

a1
a2

B−1/3

)
,

whose curvature is opposite to that observed in the data. Consequently they con-

clude that the WBE model needs to be amended and/or the data analysis needs

reassessment to resolve this discrepancy. A start in this direction has been made

by Kolokotrones et al.110 Agutter and Tuszynski5 also review the evidence that the

fractal network theory for the two-variable AR is invalid.

Another variation on this theme was made by Price et al.168 who relax the

fractal scaling assumptions of WBE and show that allometry exponents are highly

constrained and covary according to specific quantitative functions. Their results

emphasize the importance of network geometry in determining the allometry expo-

nents and supports the hypothesis that natural selection minimizes hydrodynamic

resistance. Moreover they extended McMahon’s elastic similarity model and ap-

ply it to plant scaling exponents showing its consistency with their modification of

WBE.

Prior to WBE there was no unified theoretical explanation of quarter-power

scaling. Banavar et al.12 show that the 3/4 exponent emerges naturally as an upper

bound for the scaling of metabolic rate in the radial explosion network and in

the hierarchical branching networks models and they point out that quarter-power

scaling can arise even when the underlying network is not fractal.

Finally, Weibel224 presents a simple and compelling argument on the limitations

of the WBE model in terms of transitioning from BMR to the maximal metabolic

rate (MMR) induced by exercise. The AR for MMR has an exponent b = 0.86
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rather than 3/4, so that a different approach to determining the exponent is needed.

Painter158 demonstrates that the empirical allometry exponent for MMR can be

obtained in the manner pioneered by WBE by using the Hess–Murray law for the

scaling of branch sizes between levels.

Weibel224 argues that a single cause for the power function arising from a fractal

network is not as reasonable as a model involving multiple causes, see also Agut-

ter and Tuszynski.5 Darveau et al.41 propose such a model recognizing that the

metabolic rate is a complex property resulting from a combination of functions.

West et al.251 and Banavar et al.11 demonstrate that the mathematics in the dis-

tributed control model of Darveau et al.41 is fundamentally flawed. In their reply

Darveau et al.42 do not contest the mathematical criticism and instead point out

consistency of the multiple-cause model of metabolic scaling with what is known

from biochemical205 and physiological101 analysis of metabolic control. The notion

of distributed control remains an attractive alternative to the single cause mod-

els of metabolic AR. A mathematically rigorous development of AR with fractal

responses from multiple causes was recently given by Vlad et al.218 in a general

context. This latter approach may answer the formal questions posed by many of

these critics.

4.3. Why fractal transport?

Why are fractals important in the design of allometry networks? Barenblatt and

Monin14 suggested that metabolic scaling might be a consequence of the fractal na-

ture of biology and WBE determined that fractal geometry maximizes the efficiency

of nutrient transport in biological networks. Weibel223 maintains that the fractal

design principle can be observed in all manner of physiologic networks quantifying

the observations and speculations of Mandelbrot,131,132 as does West.238

West230 conjectured that fractals are more adaptive to internal changes and to

changes in the environment than are classical processes and structures. Consider a

network property characterized by classical scaling at the level k such as the length

or diameter of a branch Fk ∝ e−λk compared with a fractal scaling characterization

of the same property Fk ∝ k−λ. What is significant in these two functional forms for

the present argument is the dependence on the parameter λ. The exponential has

emerged from a large number of optimization arguments and the inverse power-law

results from RG scaling arguments.

Assume the parameter λ is the sum of a constant part λ0 and a random part ξ.

The random part can arise from unpredictable changes in the environment during

morphogenesis, non-systematic errors in the code generating the physiologic struc-

ture or any of a number of other causes of irregularity. Thus, regardless of whether

the errors are induced internally or externally, the average is taken over an ensemble

of zero-centered Gaussian fluctuations ξ with variance σ2/2. Note that the choice

of Gauss statistics has no special significance here except to provide closed form

expressions for the averages to facilitate discussion. The relative error generated by
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Fig. 8. The error between the model prediction and the prediction averaged over a noisy param-
eter is shown for the classical model (upper curve) and the fractal model (lower curve).

the fluctuations is given by the ratio of the average value to the function in the ab-

sence of fluctuations, yielding the relative error for classical scaling εk = exp[σ2k2]

and for fractal scaling εk = exp[σ2(ln k)2].

The two error functions are graphed in Fig. 8 for fluctuations with a variance

σ2 = 0.01.At k = 15 the error in classical scaling is 9.5. This enormous relative error

means that the perturbed average property at generation 15 differs by nearly an

order of magnitude from what it would be in an unperturbed network. A biological

network with this sensitivity to error would not survive for very long in the wild. For

example, the diameter of a bronchial airway in the human lung could not survive

this level of sensitivity. However, the property of the fractal network only changes

by 10% at the distal point k = 20. The implication is that the fractal network is

relatively unresponsive to fluctuations.

A fractal network is consequently very tolerant of variability. This error tolerance

can be traced back to the broadband nature of the distribution in scale sizes of a

fractal object. This distribution ascribes many scales to each generation in the

network. The scales introduced by the errors are therefore already present in a

fractal object. Thus, the fractal network is preadapted to variation and is therefore

insensitive to change.230,231 These conclusions do not vary with modification in the

assumed statistics of the errors. Therefore let us review how fractal statistics have

been employed in the understanding of some nonmetabolic physiologic ARs.

4.3.1. WBG bronchial tree

The energy minimization argument applied to a branching network resulted in

Horton’s law. However, the theoretical arguments justifying this empirical law and

others like it assume that the network is geometrically self-similar. Real networks,

such as the bronchial tree in the mammalian lung, do not have such determinis-

tic regularity. At any generation of the bronchial airway there is a distribution of
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lengths and diameters, with a reduction in the average length and average diam-

eter between successive generations. Consequently, the simple characteristic scale

governing the decrease in bronchial dimensions across generations given by the

Hess–Murray law must be reexamined. West, Barghava and Goldberger228 (WBG)

assumed the mammalian lung to be a fractal structure having a distribution of

scales contributing to the variability in tube size at each generation. This model

yields an average bronchial diameter that decreases with generation number, not

as an exponential as suggested by Weibel and Gomez,222 but as an inverse power

law.229,232,233

WBG assume that the variability in the diameters of the bronchial tubes at

generation k is given by d(γk), where γ is a random variable that determines the

size of the diameter. In the energy minimization argument we determined that

γ = ln 2/3 and the classical reduction in diameter with generation number was

exponential d(γk) = d0e
−γk as shown in Fig. 7. However with real data this is the

reduction in the average diameter just as it was for other allometry networks so that

the random variation in diameter at generation k is smoothed over to determine the

average. Formally the behavior of the average diameter as a function of generation

number is given by:

d(k) =

∫
d(γk)p(γ)dγ , (38)

with p(γ) the pdf in scale size. Rather than prescribe a particular functional form to

this pdf in the formal definition WBG use a RG argument originally developed in an

economic context by Montroll and Shlesinger.148 Assuming the original distribution

of scales has an average value γ̄ the RG argument constructs a new distribution with

an infinite number of new scales each a factor of β larger than the preceding scale

and each occurring with a relative frequency ζ less often. The distribution resulting

from the RG relation gives rise to an empirical average denoted by brackets in terms

of the formal average Eq. (38) as follows234,235:

�d(k)� = ζ�d(βk)� + (1 − ζ)d(k) . (39)

The dominant behavior for the solution to the RG relation Eq. (39) is determined

by the singular part of the solution to the equation, which for simplicity WBG write

with a subscript �d(k)�s = ζ�d(βk)�s. Shlesinger and West200 note that the solution

to this scaling equation that provides the best fit to the data can be written as the

real part of:

�d(k)�s =
∞∑

n=−∞

An

kµn
; µn = b+ i2πn/ lnβ ; (40)

µn is the complex fractal dimension of order n for the branching process, with the

exponent b = − ln ζ/ lnβ > 0 and the An are fit by experimental data. Of course

there is in addition to Eq. (40) an analytic part to the solution that WBG calculated

but which becomes negligible with increasing k.
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Thus, the average diameter is an inverse power law in the generation number

modulated by a slowly oscillating function just as observed in the data depicted in

Fig. 9. This fractal model of the bronchial airway provides an excellent fit to the

average bronchial tube diameter data in four distinct species: dogs, rats, hamsters

Fig. 9. Top: Reploted data from Fig. 7 on log–log scales for humans. Center: The harmonic
variation in measurements for dogs, rats and hamsters taken by Raabe et al. (1976). Bottom: The

average diameters for the bronchial tubes of a hamster and RG (fractal) model prediction using
Eq. (40). [Adapted from West and Goldberger228].
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and humans.152 The quality of the fit is shown for hamsters in Fig. 9, which restricts

the summation index in Eq. (40) to n = 0, 1,−1 and A1 = A−1 yields a single

oscillation of the modulation function fit to the data.

The form of Eq. (40) strongly suggests that the RG relation for the average di-

ameter captures a fundamental property of the structure of the lung that is distinct

from classical scaling. There is an AR at each level of the bronchial tree with the

average diameter decreasing as k−b with the level being a measure of size. Moreover

the data show the same type of scaling for bronchial tube lengths and consequently

volume.

4.3.2. Distribution of bronchial diameters

Kitaoka and Suki107 use a related but distinct analysis of the lung data depicted

in Fig. 9 in which they investigate the statistical variability of the bronchial airway

diameters. Their analysis was based on the assumed relation between the airflow

rate and the airway diameter d:

Q = Cdα ,

a relation discussed in terms of energy optimization by Murry150 yielding α = 3.

The relation was also considered in a bronchial airway context by a number of other

investigators.82,105,163 The data of Raabe et al.171 reveals that the flow rate is a

random variable and that the cumulative probability for the flow rate to exceed Q

is given by:

Pr(≥ Q) ∝ 1/Q

with an inverse power-law index of −1 to three significant figures. Note that from

the additive form of the flow rate between successive generations and the da Vinci

relation between parent and daughter branches that the pdf for the diameter of the

bronchial airway is determined to be:

p(d) = Cd−(α+1) , C =
α(d0dT )

α

dα0 − dαT
(41)

with d0 the diameter of the thorax and dT the diameter of the smallest bronchial

airway. Here again the empirical distribution for the observable, the bronchial tube

diameter rather than the allometry coefficient, is an inverse power-law (Pareto) pdf.

Note that in the previous subsection the average diameter was expressed as an

inverse power law in the generation number. The distribution in the size of the

bronchial airway Eq. (41) does not directly depend on generation number and is an

inverse power law in diameter size, that is, in millimeters as depicted in Fig. 10. The

data used to construct Fig. 9 was also used to determine the cumulative distribution

of airway diameters and yields the inverse power-law distribution with α = 3.1 with

correlation coefficient of r2 = 0.988. Note that this value of the exponent is slightly

different from the optimum as we discuss in the next section. It is also noteworthy

that the oscillations around the inverse power law given by the straight line are the
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Fig. 10. Cumulative distribution of diameters on log–log plot. The regression model over the full
range of diameters yields α = 3.1 with r2 = 0.988. [Reproduced from Kitaoka and Suki107 with
permission].

same periodic variation explained using WBG theory except that the oscillations

are now a function of distance rather than generation number.

4.3.3. The optimum can be dangerous

A question of interest is whether optimal design criteria are ever realized in nature

and whether they are even desirable. The WBE model suggests that the allometry

exponent value of 3/4 is proof of the optimally of fractal design of networks for nu-

trient transport. However the controversy over the empirical value of the allometry

exponent calls this implication into question. The present discussion regarding the

mammalian lung and whether the bronchial tree is optimal has been investigated

by Mauroy et al.138 They maintain that the bronchial tree of most mammalian

lungs is a good example of an efficient distribution network with an approximate

fractal structure.152,228 They state that physical optimization is critical in that

small variations in the geometry can induce large variations in the net air flux and

consequently optimality cannot be a sufficient criterion for physiologic design of the

bronchial tree. The slight deviations observed in the parameters presumed to be

optimized are a manifestation of a safety factor being encorporated into the design

and into the capacity for regulating airway caliber.
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In the present context the size ratio h of successive airway segments are homoth-

etic with h = 2−1/3 ≈ 0.79 as discussed earlier. Homothetic scaling means that the

lengths and diameters have the same ratios between successive generations. Using

the resistance minimization argument for the bronchial network Mauroy et al.138

show that the “best” bronchial tree is fractal with constant reduction factor given

by the Hess–Murray law. Do the data support this optimal value and if not what

does that imply about the efficiency of bronchial airways?

The fractal dimension for a bronchial airway is D = − ln 2/ lnh so that the

Hess–Murray law implies D = 3 whereas h > 0.79 implies D > 3. In the human

lung it is found that the homothety ratio is h ≈ 0.85224 and the bronchial network

is therefore not optimized: its volume is too large and its overall resistance is too

small. Mauroy et al.138 emphasize that this deviation from optimal is, in fact, a

safety margin for breathing with respect to possible bronchial constrictions.

Sapoval187 has argued that without regulation of the airway caliber170 there

would be a multifractal spatial distribution of air within the lungs, resulting in

strongly nonuniform ventilation with some regions of the lung being poorly fed

with fresh air. Expanding on this theme using inhomogeneity of the homothety

ratio Mauroy et al.138 show how the optimal network is dangerously sensitive to

physiological variability and consequently design of the bronchial tree must incor-

porate more than just physical optimality. This argument has clear implications for

other allometric networks.

5. Probability Calculus and ARs

A fractal processes is one that is rich in scales with no one scale being dominant.

Thus, information in fractal phenomena is coupled across multiple scales manifest-

ing long-time memory, as for example, observed in the architecture of the mam-

malian lung,152,223,228 manifest in the long-range correlations in human gait84,235

and measured in the human cardiovascular network,161 all of which are discussed in

West.238 These phenomenological characterizations of fractal time series relate back

to the observation made earlier that if X(t) and Y (t) are stochastic time series then

Y (X) must be a random function of its random argument as well. Consequently

the general approach to determining the relation between such variables is through

their pdf ’s.

In this section we examine pdf ’s that can produce the interspecies metabolic

ARs as a relation between moments. To do this requires a brief review of some

methods from nonequilibrium statistical physics118,175 and their extension to frac-

tional equations of motions.108,236

5.1. Stochastic differential and Fokker–Planck equations

There are two major techniques available in statistical physics for the modeling of

stochastic phenomena. The first technique uses the dynamic equations constructed

by Langevin117 who introduced uncertainty through a random force in the equations
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of motion. The second technique is based on the phase space evolution of the pdf

using the Fokker–Planck equation (FPE). The conditions under which these two

methods are equivalent have been shown in a number of places, see, for example,

Lindenberg and West.118

5.1.1. Additive fluctuations

Consider the dynamics of a simple exponential relaxation process Z(t) that is dis-

rupted by a random force ξ(t):

dZ(t)

dt
= −λZ(t) + ξ(t) . (42)

We assume the statistics of the random force are normal with a delta correlated

correlation of strength D

�ξ(t)ξ(t′)� = 2Dδ(t− t′) . (43)

An alternative description of the dynamics is given by the evolution of the prob-

ability density in phase space where P (z, t)dz is the probability that the dynamic

variable Z(t) has a value in the interval (z, z + dz) at time t given a value q(t) at

the origin z = 0. The phase space dynamics are formally expressed by the equation:

G

(
∂

∂t
,
∂

∂z

)
P (z, t) = q(t)δ(z) . (44)

The analytic function G(·, ·) of the indicated operators along with the inhomoge-

neous term q(t) determine the dynamics of the process modeled by the pdf.

A phase space equation for a classical diffusion process with linear dissipation

equivalent to Eq. (42) is determined by:

G

(
∂

∂t
,
∂

∂z

)
=

∂

∂t
− ∂

∂z

[
λz +D

∂

∂z

]
and q(t) = 1 . (45)

The corresponding FPE is given by217:

∂P (z, t|z0, t0)
∂t

=
∂

∂z

[
λz +D

∂

∂z

]
P (z, t|z0, t0) , (46)

where P (z, t|z0, t0)dz is the probability that the dynamic variable lies in the phase

space interval (z + dz, z) at time t conditional on Z(0) = z0 at time t = t0. The

solution to Eq. (46) for t0 = 0 is given by:

P (z, t|z0) =
1√

4πσ2(t)
exp

[
− (z − �z; t�)2

2σ2(t)

]
(47)

with average value �z; t� = z0e
−λt and variance σ2(t) = D/λ(1 − e−λt). In the

absence of dissipation the average value is constant and the variance grows linearly

in time. However for finite dissipation the average decays exponentially in time

and the variance approaches a constant value given by the ratio of the diffusion

coefficient and the dissipation rate. If Z is the velocity of a Brownian particle the
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variance would be proportional to the temperature of the surrounding fluid resulting

in the Einstein relation D/λ = kBT , see, for example, Fürth.61

Multiplicative fluctuations can be addressed by examining the FPE associated

with a linear stochastic dissipation parameter.118,193 Consider the nonlinear rate

equation with multiplicative fluctuations

dX

dt
= −λX lnX + ξ(t)X (48)

for which the logarithmic transformation Z = lnX yields the rate equation with

additive fluctuations ξ(t) given by Eq. (42). The FPE for the transformed equation

is Eq. (46) with the solution Eq. (47). In terms of the original variable the pdf is a

log-normal distribution, for more details see Goel et al.76

5.1.2. Stochastic ontogenetic growth model

A more interesting rate equation was first considered by von Bertalanffy219 who

postulated a simple nonlinear rate equation to describe the growth of TBM m of

the form

dm

dt
= Aηm

η − Cβm
β (49)

at time t where η and β are unspecified exponents, and Aη and Cβ are positives

constants. The solution to this equation was studied by von Bertalanffy219 with

η = 2/3 and β = 1. More recently West et al.250 constructed Eq. (49), called an

ontogenetic growth model (OGM), from a conservation of energy argument and

obtained a universal curve from the solution and fit it to data by using η = 3/4

and β = 1. In the OGM the parameters are given by Cβ = Bm/Em with Bm the

metabolic rate required to maintain an existing unit of biomass; Em the metabolic

energy required to create a unit biomass and Aη = a/Em. Banavar et al.10 obtained

an equivalent universal curve and fit the same data for both η = 2/3, 3/4 and β = 1.

The OGM equation has the scaling form:

dm

dt
= mηf(m/M0) , (50)

where M0 is chosen to be the maximum TBM that solves the stationary equation

dm/dt = 0. The data from 13 organisms graphed as r = (m/M0)
1−η versus τ =

− ln(1 − r) collapse onto a single universal curve250 that is fit equally well with

η = 2/3 or η = 3/4.10

West and West246 generalized the OGM to incorporate the disordering influ-

ence of entropy by including the statistical fluctuations of the measured mass. The

dynamics of such a stochastic process eventually erases the influence of the initial

state and this gradual loss of information is a manifestation of increasing entropy.

They refer to this as the stochastic ontogenetic growth model (SOGM). Consider a

phenomenological Langevin equation with multiplicative fluctuations for the TBM

where to avoid confusion we use the dummy variable Z = m, which is actually the
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TBM for species i and individual j and individual j given by Mij . Thus, we replace

Eq. (49) for η = b and β = 1 for the SOGM stochastic differential equation:

dZ

dt
= AbZ

b − C0Z + Zξ(t) , (51)

with ξ(t) given by a delta correlated random process of strength D with normal

statistics and correlations given by Eq. (43). Rather than assuming the rate of

creating a unit biomass is a single number C1 they assume it has a stochastic

component: C1 → C0 + ξ(t), with average value C0.

An equivalent description of the SOGM is given by the corresponding dynamics

of the pdf in phase space. The FPE corresponding to Eq. (51) is118,193:

∂P (z, t)

∂t
=

∂

∂z

[
−(Abz

b − C0z) +Dz
∂

∂z
z

]
P (z, t) . (52)

The general solution to Eq. (52) remains a mystery, but the steady-state solution

(t → ∞) denoted by the ss subscript obtained by setting the probability flux to

zero is given by:

Pss(z) =
βγ

µ−1

β

Γ

(
µ− 1

β

) exp[−γz−β]

zµ
; (53)

normalized on the interval (0,∞) with the parameter values γ = Ab/βD, µ =

1 + (C0/D) and β = 1− b. Note that the steady-state solution to the SOGM FPE

replaces the deterministic steady-state solution obtained from the OGM.10,250

West and West246 fit the parameters in Eq. (53) to a data set of mammalian

species tabulated by Heusner91 and this fit is depicted in Fig. 11. They constructed

a histogram by partitioning the mass axis into intervals of 20 g and counting the

number of species within each interval. The vertical axis is the relative number of

species as a function of TBM. The allometry exponet is fixed at b = 3/4 so that

β = 1/4 and the remaining parameters are determined to have the best values of

γ = 13.4 and µ = 2.04 with a quality of fit measured by the correlation coefficient

r2 = 0.96.

Figure 11 shows the fit to the low-mass species out to 500 g. The remaining fit

out to three million grams is not shown but is in fact the more ineresting part of the

distribution. To capture this information on a single graph we246 construct a second

histogram, this one for the asymptotic region from approximately one thousand to

three million grams. Figure 12 depicts the fit to the logarithmic histogram data

points indicated by the dots starting at a TBM of 1.1 kg. An inverse power-law

distribution would be a straight line with a negative slope on this log–log graph.

Inserting the parameter values µ = 1.67 and γ − 8.96 into the steady-state TBM

pdf given by Eq. (53) yields the solid cuve in Fig. 12 which fits the data extremely

well. The curve is quite clearly an inverse power law in the interspecies TBM.

This coarse-grained description of the interspecies TBM statistics indicates great
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Fig. 11. The histogram constructed from the average TBM data for 391 mammalian species91

is given by the dots. The mass data has been divided into intervals of 20 g each and the number
of species within each such interval counted. The horizontal axis is the relative frequency in each
interval and the solid line segment is the least squares fit of Eq. (53) to the data points. The
quality of fit is r2 = 0.96.246

Fig. 12. The average TBM data for 391 mammalian species91 are used to construct a histogram.
The mass interval is divided into 20 equally spaced intervlas on a logarithm scale and the number
of species within each interval counted. The least-square fit to the nine data points is then made
using logrimically transformed distribution, see Ref. 246 for details. The quality of the fit is
r2 = 0.998.

variability particularly since µ < 2 indicating that the variance of the interspecies

TBM diverges.

5.1.3. Interspecies AR derivation

We241,243 explicitly constructed a statistical theory of the fluctuations in the mea-

sured species metabolic rate Bi and TBMMi to calculate the interspecies metabolic
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AR. The strategy was to related the average BMR to the average TBM through the

AR. This approach can be followed here from the long-time or steady-state average

SOGM TBM using the steady-state pdf:

�z� =
∫

∞

0

zPss(z)dz =
βγ

µ−1

β

Γ

(
µ− 1

β

)
∫

∞

0

z1−µ exp[−γz−β]dz

and replacing z with the TBM for species i reduces the average to:

�Mi� = γ1/β

Γ

(
µ− 1

β
− 1

β

)

Γ

(
µ− 1

β

) ≈
[
γ

β

µ− 1

]1/β
. (54)

Here we interpret the ensemble average in terms of an average over an ensemble of

individual members of species i. In this equation we have approximated the ratio

of gamma functions by an asymptotic value and substituting the parameter values

into the right-hand side of Eq. (54) yields:

�Mi� ≈
(
Ab

C0

)1/β

=

(
a

Bm

)1/β

. (55)

The equality in Eq. (55) is obtained by substituting the values of the parameters

from OGM and using b = 3/4 and β = 1/4 to yield

Bm ≈ a�Mi�−1/4 . (56)

Thus, the average metabolic rate necessary to maintain a unit biomass is dependent

on the inverse quarter power of the average TBM of the species. This is the same

expression obtained by Moses et al.149 if we identify their adult TBM with the

average TBM obtained from the steady-state pdf of the SOGM.

Note that the average TBM for species i replaces M0 obtained from the

dm/dt = 0 solution to Eq. (50). On the other hand the average BMR can be deter-

mined from the bth moment of the TBM

�Bi� = a�M b
i � = a

∫
∞

0

zbPss(z)dz

= aγ−1+1/β

Γ

(
µ− 1

β
+ 1− 1

β

)

Γ

(
µ− 1

β

) ≈ a

[
γ

β

µ− 1

]1/β−1

. (57)

Comparing this last equation with Eq. (54) allows us to write:

�Bi� ≈ a�Mi�1−β = a�Mi�b , (58)

which is the interspecies metabolic AR. We emphasize246 that the interspecies AR

is a pheomenological equation that without the SOGM does not have a formal

theoretical basis.
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The SOGM constitutes the first theoretical construction of an interspecies

metabolic AR starting from a fundamental dynamic equation and relating the

proper averages. It is true that we used a nonlinear multiplicative Langevin equa-

tion, but the original dynamics stem from the conservation of energy argument250

and the fluctuations are a consequence of the dynamics being degraded by en-

tropy.243 This suggests a possible untraveled path for future research in this area.

5.2. Scaling solution for AR

A phase space equation for anomalous diffusion containing the influence of long-

term memory on the dynamics of the pdf was first discussed by West and Seshadri227

in term of the fractional calulus. The resulting fractional diffusion equation108,236

(FDE) has subsequently found a variety of uses in the physical sciences. The pdf

that solves a class of FDEs satisfies the scaling equation

P (z, t) =
1

tµz
Fz

( z

tµz

)
. (59)

Note that this scaling of the pdf is also a realization of the RG relation for the

random variable Z(bt) = bµZ(t).

The function Fz(·) in Eq. (59) is left unspecified but it is analytic in the similarity

variable z/tµ. As mentioned in the introduction a standard diffusion process Z(t)

is the displacement of the diffusing particle from its initial position at time t, and

for vanishing small dissipation the scaling parameter is µz = 1/2 and the functional

form of Fz(·) is a normal distribution. However, for general complex phenomenon

there is a broad class of distributions for which the functional form of Fz(·) is

not Gaussian and the scaling index µz �= 1/2. For example, the α-stable Lévy

process147,184,198,264 scales in this way and the Lévy index is in the range 0 < α ≤
2, with the equality holding for the Gauss distribution and the scaling index is

related to the Lévy index by µz = 1/α, see West, Geneston and Grigolini239 and

Uchaikin216 for very different discussions of this scaling.

The Gibbs entropy (Shannon information),23,197 can be defined using the pdf

for the variable Z(t) Eq. (59) to obtain:

Sz(t) = −
∫

P (z, t) lnP (z, t)dz = S0
z + µz ln t , (60)

so the entropy deviation from the reference state S0
z ≡ −

∫
Fz(q) lnFz(q)dq inte-

grated with respect to the scaled variable q = z/tµx , increases logarithmically in

the independent variable t.

Huxley98 assumed the differential growth equations in an organism to have

the same form with proportional growth rates. West and West241,243 adapted this

assumption and presumed the two parts of an organism share the same class of

probability densities that describe their interacting observables. Here t is clock time,

the independent variable, and the network measures are the dependent variables,
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the average of a generic scaling observable using the pdf given by Eq. (59) yields:

〈Z(t)〉 =
∫

zP (z, t)dz = tµz

∫
qFz(q)dq = tµz Z̄ . (61)

Note that Z̄ =
∫
qFz(q)dq is a finite, time-independent constant. Comparing

Eqs. (61) and (60) enables us to write for the change in entropy relative to a

reference state:

∆Sz = ln[〈Z(t)〉/Z̄] (62)

so that the change in the average value of an observable is determined by the change

in entropy

〈Z(t)〉 = Z̄e∆Sz(t) . (63)

Consequently Z may be identified with either of the network variables to obtain the

relation between entropies from Eq. (60)

∆Sx/µx = ∆Sy/µy

and using Eq. (63) we can write:

〈Yi〉 = Ȳ e∆Sy = Ȳ e
µy
µx

∆Sx = a〈Xi〉b (64)

with the allometry coefficient given by a = Ȳ /X̄b and the allometry exponent by

b = µy/µx. We have again introduced the index for the single species i to emphsize

that this is the interspecies AR. This derivation of the empirical interspecies AR is

solely a consequence of the scaling properties of the pdf ’s.

The rate of entropy generation is determined by the time derivative of Eq. (63)

for X and Y and substituting from the entropy balance equation yields:

1

µx〈Xi〉
d〈Xi〉
dt

=
1

µy〈Yi〉
d〈Yi〉
dt

. (65)

Equation (65) shows the correspondence of the probabilistic approach to AR with

that of Huxley, with the dynamic variables of individual species members replaced

by averages over an ensemble of individuals. In the present case the allometry ex-

ponent is now the ratio of the power-law indices in the pdf ’s, which from Eq. (65)

can also be interpreted as the ratio of growth rates. Moreover, the allometry coeffi-

cient is determined by the scaling functions in the pdf ’s. It is the average response

or adaptation of the subnetwork to the average behavior of the host network that

is captured by the interspecies AR through the balance of the entropy generated.

Moreover it is the scaling in the pdf and not necessarily geometric scaling of fractal

networks that is the origin of the physiologic AR. Underlying this derivation is the

assumption made earlier that this is an information-dominated network and is con-

sequently driven by information (entropy) gradients and not the energy gradient

necessary in the fractal geometry derivation of nutrient transport.
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6. Conclusion

The statistical analysis of the metabolic data presented herein show that empir-

ical ARs exist across multiple species and consequently the form of ARs are not

solely dependent on species specific mechanisms. Moreover we have shown there is

no universal value for the allometry exponent for three reasons. First there is the

variability in the values of the allometry exponent obtained from data analysis in

Sec. 3. We could rehash the arguments here, but an objective observer would have

to conclude that although there are indications that a particular value might be

strongly indicated in a specific context, the evidence for universality is not com-

pelling. Even in the case of metabolic ARs one could reasonably make a case of

b = 2/3 for small animals, b = 3/4 for large animal and b = 1 for plants, but no

one value of b that spans the total range of animal and plant sizes. Second, the

only theories that predict a universal value of the allometry exponent do so to ex-

plain the intraspecies AR and not the interspecies AR. There is no first principles

theory that derives the empirical AR between the averaged observables. The phe-

nomenological theory presented in Section 4 successfully derives the interspecies

AR and treats the allometry coefficient and allometry exponent as empirical pa-

rameters determined by the parameters in the pdf ’s. Third and last the allometry

exponent and coefficient are determined to co-vary using theory243 and statistical

data analysis.72

However let us not be too critical of phenomenological theories. Recall that

thermodynamics is a phenomenological theory that has enjoyed remarkable suc-

cess in explaining a plethora of complex physical phenomena. Even so the physics

community has not yet been able to derive thermodynamics from the more reduc-

tionist (fundamental) statistical mechanics, so that a mechanistic understanding

of thermodynamics remains controversial. By the same token the phenomenolog-

ical theory of AR presented herein takes the discussion of AR out of the domain

of the reductionist approaches previously used to derive the intraspecies ARs and

refocuses it on the statistical properties of the empirical interspecies ARs. These

analyses indicate a new avenue for the study of physiologic ARs, one that system-

atically includes both deterministic and statistical aspects using the probability

calculus. This new perspective indicates that the origins of physiologic AR reside

in the scaling properties of the pdf ’s for nested complex networks.

In simple physical phenomena the dynamics of a network coupled to the en-

vironment is described by a Langevin equation, which is a stochastic differential

equation. This mechanical description of the dynamics is equivalent to the phase

space dynamics of the pdf such as given by the FPE. As the network becomes more

complex its past history becomes more and more influential until finally the FPE

must be replaced with a FDE and the dynamics are the domain of the fractional

calculus. As we saw in Sec. 5 the general solution to a class of FDE’s is a scaling pdf

implying that ARs can result from scaling in the statistical dynamics of the phe-

nomenon. The influence of the history of the growth of an organism on the growth
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of an organ leads to intraspecies AR; the history of the size of an organism on the

metabolic rate of the organism across species leads to interspecies AR.

The arguments in Sec. 5 imply that empirical ARs are a consequence of infor-

mation transfer between complex information-dominated networks. Of course we

have not rigorously proven that the entropy decrease (information increase) in the

host network and the increase in entropy (information decrease) in the subnetwork

have the relations assumed, this remains to be done. However the empirical rela-

tions are consistent with the Principle of Complexity Management in which the

transfer of information between two complex information-dominated networks has

been shown7,239 to proceed from the network with the greater information content

to the network with the lesser.

The phenomenological theory of empirical AR presented herein incorporates

both stochastic and reductionistic mechanisms. From this approach we conclude

that the empirical AR for the BMR, the life time of an organism and the myriad

of other complex phenomena are not completely explained by reductionistic mech-

anisms. In particular the allometry parameters are determined not to be universal.

This was supported by the demonstration that the allometry exponent and coeffi-

cient co-vary. On the other hand, the laws from the theory of probability can have

universal forms without having universal parameters, for example the Law of Fre-

quency of Errors and the Law of Large Numbers. The empirical AR is in part a

consequence of the generic statistical behavior of complex networks that depend on

the infinitely divisible nature of the pdf.74,75 The phenomenological theory of AR

presented herein is the application of the probability calculus to the understanding

of the origins of the empirical relations between averages of different parts of a com-

plex network. Consequently empirical AR is a manifestation of a law whose origin

can be traced back to the probability calculus and the balancing of deterministic

and stochastic mechanisms.
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